Summary

蒸发速率检测一种基于阻抗高性能平台

Published: October 17, 2016
doi:

Summary

本文提出了蒸发率检测解决方案的基于阻抗的设备。它提供了明显的优势比传统的减肥方法:快速响应,高灵敏度的检测,一个小样本的要求,多样品测量,并便于拆卸清洗和再利用的目的。

Abstract

本文描述了用于在检测到的蒸发速率的新颖的基于阻抗的平台的方法。该模型复合透明质酸这里用于演示的目的。以具有各种浓度的溶液的湿润剂的模型化合物的多个蒸发试验为比较目的进行的。常规的减肥方法被称为蒸发率检测的最简单的,但费时,测量技术。然而,一个明显的缺点是,大量的样品需要和多个样本测试不能在同一时间进行。在文献首次电阻抗传感芯片被成功地应用到在时间共享,连续和自动地实时蒸发调查。而且,试验样品的少0.5毫升需要在此基于阻抗的装置,和一个大的阻抗变化显示各稀soluti之间附件。所提出的高灵敏度和快速响应阻抗传感系统发现超越蒸发率检测方面的传统的减肥方法。

Introduction

蒸发是一种液体汽化并沿水集体体的气 – 液界面发生。表面附近的水分子,由于水分子的碰撞成为能够从液体中逸出。蒸发速度蒸发的过程中,一个重要的关键因素。一般地,平衡或体积管1-3被广泛使用的,以检测溶液的蒸发。然而,它需要很长的时间来测量的蒸发速率由于平衡或体积管的精度的限制。出于这个原因,一个响应和高灵敏度的仪器必须开发探入蒸发过程的细节。

电化学阻抗谱(EIS)是一个快速响应,在原位阻抗检测电化学系统表征4方面敏感和有效的实验手段。因此,交流阻抗可以以各种呸施加LDS, 如最近对细胞行为5项研究,生物分析检测6-7,电解8,导电聚合物9和电化学提取10。尽管EIS系统已成功应用于多种学科的应用,存在其应用蒸发研究的一个非常小的数字出版物。

透明质酸,高分子量的多糖具有较强的水结合的潜力,是用于化妆品应用公知的保湿剂。一个透明质酸分子可绑定多达500个水分子11和达到1000倍原来体积12。透明质酸的极少量可具有保湿功能13-14。由于高的保湿性,透明质酸已经成为化妆品的保湿剂的产品与世界各地的15个高的商业价值的重要组成部分。

ŧ他的研究提出了基于阻抗新颖装置具有高速检测,小体积的样品的要求,和多个样品测量16-19的方法。它是为重点的解决方案,以此来验证比传统的称重方式创新的检测机制的优越性之间的相对蒸发速率比较。

Protocol

1.实验芯片模块 制造的氧化铟锡(ITO)通过光刻和化学湿法蚀刻工艺电极片 商业获取ITO基板(370毫米×480毫米×0.5毫米(长x宽x高))与2,600 ITO层(见材料清单)。切片ITO基板以90mm的×90毫米×0.5毫米的玻璃切割器用于在4英寸对准ITO电极图案化工艺的尺寸。 使用超声波清洗机清洗ITO玻璃用丙酮,然后用去离子水,每次15分钟。擦干ITO玻璃清洁干燥空气。 分配…

Representative Results

在蒸发过程中,在测试溶液中的导电离子成为浓的减少溶液体积,以及该溶液的阻抗降低。测定重量损失,并在每个测试溶液的蒸发进展阻抗降低的速率。为了比较的目的,在体重损失和阻抗降低的速率的数据标准化为水,然后在图5中绘制在一起。如在图5中所示,重量损失表明了相同的倾向的阻抗,并表明,该相对蒸发速率到水蒸发与透明质酸浓度降低。然而,大量的?…

Discussion

蒸发测量在这个基于阻抗的检测关键步骤是测试的解决方案的制备。去离子水不能由于其巨大的阻抗被使用。相反,使用含有导电离子的自来水制备用于实验透明质酸溶液。但是,自来水的电性能不是使用恒定的。因此,归一化,如相对蒸发速率,以水在这项研究中,获得通过作为蒸发的替代指标。该技术的限制是,测试的解决方案必须有电化学表征导电离子。

<p class="jov…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了科技部,台湾教育部科技部105-2627-B-005-002主办,在授予数量MOST 104-2221-E-241-001-MY3和。

Materials

95 % ethanol Echo Chemical Co., Ltd., Miaoli, Taiwan 484000001103C-00EC
Acetone Avantor Performance Materials Inc., Center Valley, PA, USA JTB-9005-68
Development solution Kemitek Industrial Crop., Hsinchu, Taiwan 12F01031 KTD-1
Etching solution eSolv Technology Co., Taipei, Taiwan EG-462
Hyaluronic acid Shandong Freda Biopharm Co., Ltd., Jinan, China 1010212 Molecular weight 980k, Cosmetic Grade
Photoresist solution AZ Electronic Materials Taiwan Co., Ltd., Hsinchu, Taiwan 65101M19 AZ6112
8-well silicone array Greiner bio-one Inc., Frickenhausen, Baden-Württemberg, Germany FlexiPERM
ITO glass GemTech Optoelectronics Co., Taoyuan, Taiwan
Vial  Sigma-Aldrich Co. LLC., St. Louis, MO, USA 854190
Film photomask Taiwan Mesh Co., Ltd, Taoyuan, Taiwan
Lock-in amplifier Stanford Research Systems, Inc., Palo Alto, CA, USA SR830
Switch relay Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan
Electronic balance machine Precisa Co., Dietikon, Switzerland XS225A

References

  1. Francis, G. W., Bui, Y. T. H. Changes in the composition of aromatherapeutic Citrus oils during evaporation. Evid.-based Complement Altern. Med. 2015 (421695), 1-6 (2015).
  2. Ochiai, N., et al. Extension of a dynamic headspace multi-volatile method to milliliter injection volumes with full sample evaporation: application to green tea. J. Chromatogr. A. 1421, 103-113 (2015).
  3. Zribi, W., Aragues, R., Medina, E., Faci, J. M. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Tillage Res. 148, 40-45 (2015).
  4. Chang, B. Y., Park, S. M. Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3, 207-229 (2010).
  5. Brooks, E. K., Tobias, M. E., Yang, S., Bone, L. B., Ehrensberger, M. T. Influence of MC3T3-E1 preosteoblast culture on the corrosion of a T6-treated AZ91 alloy. J. Biomed. Mater. Res. Part B. 104 (2), 253-262 (2016).
  6. Tabrizi, M. A., Shamsipur, S., Farzin, L. A high sensitive electrochemical aptasensor for the determination of VEGF165 in serum of lung cancer patient. Biosens. Bioelectron. 74, 764-769 (2015).
  7. Tran, T. B., Nguyen, P. D., Baek, C., Min, J. Electrical dual-sensing method for real-time quantitative monitoring of cell-secreted MMP-9 and cellular morphology during migration process. Biosens. Bioelectron. 77, 631-637 (2016).
  8. Kruger, A. J., Krieg, H. M., van der Merwe, J., Bessarabov, D. Evaluation of MEA manufacturing parameters using EIS for SO2 electrolysis. Int. J. Hydrog. Energy. 39 (32), 18173-18181 (2014).
  9. Guler, Z., Sarac, A. S. Electrochemical impedance and spectroscopy study of the EDC/NHS activation of the carboxyl groups on poly(ε-caprolactone)/poly(m-anthranilic acid) nanofibers. Express Polym. Lett. 10 (2), 96-110 (2016).
  10. Xi, X., Si, G., Nie, Z., Ma, L. Electrochemical behavior of tungsten ions from WC scrap dissolution in a chloride melt. Electrochim. Acta. 184, 233-238 (2015).
  11. Olejnik, A., Goscianska, J., Zielinska, A., Nowak, I. Stability determination of the formulations containing hyaluronic acid. Int. J. Cosmetic Sci. 37, 401-407 (2015).
  12. Marcellin, E., Steen, J. A., Nielsen, L. K. Insight into hyaluronic acid molecular weight control. Appl. Microbiol. Biotechnol. 98, 6947-6956 (2014).
  13. Laurent, T. C., Laurent, U. B. G., Fraser, J. R. E. The structure and function of hyaluronan: An overview. Immunol. Cell Biol. 74 (2), A1-A7 (1996).
  14. Papakonstantinou, E., Roth, M., Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Derm.-Endocrinol. 4 (3), 253-258 (2012).
  15. Sze, J. H., Brownlie, J. C., Love, C. A. Biotechnological production of hyaluronic acid: A mini review. 3 Biotech. 6, 67 (2016).
  16. Lin, C. Y., et al. Real-time detection of β1 integrin expression on MG-63 cells using electrochemical impedance spectroscopy. Biosens. Bioelectron. 28 (1), 221-226 (2011).
  17. Hsiao, S. Y., et al. Chemical-free and reusable cellular analysis: Electrochemical impedance spectroscopy with a transparent ITO culture chip. Int. J. Technol. Hum. Interact. 8 (3), 1-9 (2012).
  18. Lin, Y. S., et al. A real-time impedance-sensing chip for the detection of emulsion phase separation. Electrophoresis. 34 (12), 1743-1748 (2013).
  19. Lin, Y. S., Chen, C. Y. A novel evaporation detection system using an impedance sensing chip. Analyst. 139 (22), 5781-5784 (2014).
  20. Tseng, S. F., et al. Graphene-based chips fabricated by ultraviolet laser patterning for anelectrochemical impedance spectroscopy. Sens. Actuator B-Chem. 226, 342-348 (2016).
  21. Pavicic, T., et al. Efficacy of cream-based novel formulations of hyaluronic acid of different molecular weights in anti-wrinkle treatment. J. Drugs Dermatol. 10 (9), 990-1000 (2011).
  22. Gotoh, S., et al. Effects of the molecular weight of hyaluronic acid and its action mechanisms on experimental joint pain in rats. Ann. Rheum. Dis. 52 (11), 817-822 (1993).
  23. Saettone, M. F., Nannipieri, E., Cervetto, L., Eschini, N., Carelli, V. Electrical impedance changes and water content in O/W emulsions during evaporation. Int. J. Cosmetic Sci. 2 (2), 63-75 (1980).
  24. Fernandez-Sanchez, C., McNeil, C. J., Rawson, K. Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development. Trac-Trends Anal. Chem. 24 (1), 37-48 (2005).
check_url/fr/54575?article_type=t

Play Video

Citer Cet Article
Chou, W., Lee, P., Chen, C., Lin, Y., Lin, Y. A High Performance Impedance-based Platform for Evaporation Rate Detection. J. Vis. Exp. (116), e54575, doi:10.3791/54575 (2016).

View Video