Summary

利用乙烯释放化合物,2-氯乙基膦酸,作为一种工具来研究细菌乙烯反应

Published: November 10, 2016
doi:

Summary

The protocols outlined herein facilitate the convenient investigation of bacterial ethylene responses by utilizing 2-chloroethylphosphonic acid (CEPA). Ethylene is produced in situ through the decomposition of CEPA in an aqueous bacterial growth medium, circumventing the requirement for pure ethylene gas.

Abstract

Ethylene (C2H4) is a gaseous phytohormone that is involved in numerous aspects of plant development, playing a dominant role in senescence and fruit ripening. Exogenous ethylene applied during early plant development triggers the triple response phenotype; a shorter and thicker hypocotyl with an exaggerated apical hook. Despite the intimate relationship between plants and bacteria, the effect of exogenous ethylene on bacteria has been greatly overlooked. This is partly due to the difficulty of controlling gaseous ethylene within the laboratory without specialized equipment. 2-Chloroethylphosphonic acid (CEPA) is a compound that decomposes into ethylene, chlorine, and phosphate in a 1:1:1:1 molar ratio when dissolved in an aqueous medium of pH 3.5 or greater. Here we describe the use of CEPA to produce in situ ethylene for the investigation of ethylene response in bacteria using the fruit-associated, cellulose-producing bacterium Komagataeibacter xylinus as a model organism. The protocols described herein include both the verification of ethylene production from CEPA via the Arabidopsis thaliana triple response assay and the effects of exogenous ethylene on K. xylinus cellulose production, pellicle properties and colonial morphology. These protocols can be adapted to examine the effect of ethylene on other microbes using appropriate growth media and phenotype analyses. The use of CEPA provides researchers with a simple and efficient alternative to pure ethylene gas for the routine determination of bacterial ethylene response.

Introduction

烯烃乙烯(C 2 H 4)首次被发现在1901年的植物激素被观察到,豌豆苗,在使用煤气灯一个实验室中生长,显示出不正常的形态,其中茎(胚轴)为较短时,较厚的和弯曲相比普通豌豆苗横盘整理;表型后称为三重反应1,2。随后的研究表明,乙烯是一种调节多种发育过程如生长,应激反应,果实成熟衰老3。 拟南芥植物生物学研究模式生物的重要激素,已在关于其对乙烯反应得到很好的研究。几个乙烯反应突变体已经被分离通过利用在黑暗生长的中观察到的三联反应表型拟南芥秧苗在乙烯1,4,5的存在。生物合成的前体为乙烯生产厂是1-一个minocyclopropane羧酸(ACC)6和三重反应测定期间通常用于增加内源性乙烯产量,导致三联响应表型1,4,5。

虽然乙烯反应被广泛研究在植物中,外源乙烯对细菌的效果大大充分研究,尽管细菌与植物的密切联系。一项研究报告指出某些假单胞菌株可以使用乙烯作为碳源和能源7的唯一来源生存。然而,只有两个研究已经证明,细菌乙烯反应。第一项研究表明, 铜绿假单胞菌 ,P的菌株荧光假单胞菌 ,P.恶臭 ,和P.丁香使用琼脂糖塞测定,其中熔融的琼脂糖用纯乙烯气8平衡的趋化性缓冲液混合分别朝向乙烯趋化。但是,据我们所知,没有出现过菲尔特采用纯乙烯气体呃报告表征细菌乙烯反应,可能是由于处理实验室气体没有专业设备的困难。细菌乙烯反应的第二份报告表明,乙烯增加细菌纤维素生产的影响基因表达的水果相关的细菌,Komagataeibacter(Gluconacetobacter)xylinus 9。在这种情况下,乙烯-释放化合物,2-氯乙基膦酸(CEPA)用于细菌生长介质内就地产生乙烯,绕过用于纯乙烯气体或专门的设备的需要。

14通过一碱催化的,一级反应12 1的摩尔比高于pH 3.5 10,11:CEPA在1产生乙烯。 CEPA的降解在生产乙酯与pH和温度13,14和结果正相关烯,氯和磷酸盐。 CEPA提供兴趣研究细菌反应,乙烯与方便的替代乙烯气体的研究。

以下协议的总体目标是提供一种简单而有效的方法来研究细菌乙烯反应,并且包括从安排分解细菌生长培养基中生产乙烯的生理相关水平的验证,培养物pH的分析,以确保CEPA分解期间不受损细菌生长,和的乙烯对细菌形态和表型的影响的评估。我们演示使用K.这些协议xylinus,然而,这些协议可以适于通过使用适当的生长培养基中和表型分析,以研究在其它细菌乙烯反应。

Protocol

1.化学品制备500mM的安排(144.49克/摩尔)的溶液中,并同时包含500 mM氯化钠(58.44克/摩尔)中的溶液和500毫的NaH 2 PO 4·H 2 O(137.99克/摩尔)中酸化(pH 2.5)超纯水或0.1N HCl中。混合使用一个旋涡,直到解决方案是明确的。 连续稀释(10倍)的500mM的溶液在相同的溶剂,得到的5mM和50mM的股票。 制备的1-氨基环丙烷甲酸(ACC;101.1克/摩尔)的10mM溶液在超纯?…

Representative Results

示意图板设置从CEPA乙烯解放SH培养基(pH值为7)经三重反应实验验证如图1A – ℃。示出了防护薄膜组件的协议的流程图在图2中黑暗生长的A中示出拟南芥幼苗展现的三重反应表型(以一种夸张的顶钩较短和较厚的下胚轴)中ACC的存在下,并在通过CEPA的SH培养基上分解产生乙烯(pH 7)中的存在,但未经处理的条件下,不<stro…

Discussion

此处所描述的方法使用的模式生物,K勾勒出从CEPA 就地产生乙烯的细菌乙烯反应的研究xylinus。这种方法是非常有用的乙烯可以通过补充有pH值大于3.5 10,11-用CEPA否定为纯乙烯气或专门的实验室设备的需要的任何含水介质来制备。这种方法不限定于学习CEPA衍生乙烯对细菌的效果,但也可以适用于研究在真核生物乙烯反应。重要的是平行的对照实验,用磷酸盐和?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors thank Dr. Dario Bonetta for providing Arabidopsis thaliana seeds and for technical assistance in regards to the triple response assay, as well as Simone Quaranta for help with FT-IR. This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant (NSERC-DG) to JLS, an Ontario Graduate Scholarship (OGS) to RVA, and a Queen Elizabeth II Graduate Scholarship in Science and Technology (QEII-GSST) to AJV.

Materials

1-aminocyclopropane carboxylic acid (ACC) Sigma A3903 Biosynthetic precursor of ethylene in plants
4-sector Petri dish Phoenix Biomedical CA73370-022 For testing triple response
Agar BioShop AGR001.1 To solidify medium
Canon Rebel T1i DLSR camera Canon 3818B004 For pictures of pellicles
Cellulase from Trichoderma reesei ATCC 26921  Sigma C2730 Aqueous solution
Citric acid BioShop CIT002.500 For SH medium
Commercial bleach Life Brand 57800861874 Bleach for seed sterilization
Concentrated HCl BioShop HCL666.500 Hydrochloric acid for pH adjustment
Digital USB microscope Plugable N/A For pictures of colonies
Ethephon (≥ 96%; 2-chloroethylphosphonic acid) Sigma C0143 Ethylene-releasing compound
Glucose BioBasic GB0219 For SH medium
Komagataeibacter xylinus ATCC 53582 ATCC 53582 Bacterial cellulose-producing alphaproteobacterium
Microcentrifuge tube LifeGene LMCT1.7B 1.7 mL microcentrifuge tube
Murashige and Skoog (MS) basal medium  Sigma M5519 Arabidopsis thaliana growth medium
Na2HPO4·7H2O  BioShop SPD579.500 Sodium phosphate, dibasic heptahydrate for SH medium
NaCl BioBasic SOD001.1 Sodium chloride for saline and control solution
NaH2PO4·H2O  BioShop SPM306.500 Sodium phosphate, monobasic monohydrate for control solution
NaOH BioShop SHY700.500 Sodium hydroxide for pH adjustment
Paraffin film Parafilm PM996 For sealing plates and flasks
Peptone (bacteriological) BioShop PEP403.1 For SH medium
Petroff-Hausser counting chamber Hausser scientific 3900 Bacterial cell counting chamber
Polyethersulfone sterilization filter 0.2 µm VWR 28145-501 For sterilizing cellulase
Sucrose BioShop SUC600.1 Sucrose for MS medium
Yeast extract BioBasic G0961 For SH medium

References

  1. Guzmán, P., Ecker, J. R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 2 (6), 513-523 (1990).
  2. Bakshi, A., Shemansky, J. M., Chang, C., Binder, B. M. History of research on the plant hormone ethylene. J. Plant Growth Regul. 34 (4), 809-827 (2015).
  3. Schaller, G. E. Ethylene and the regulation of plant development. BMC Biol. 10 (1), (2012).
  4. Hua, J., Sakai, H., et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell. 10 (8), 1321-1332 (1998).
  5. Bleecker, A. B., Estelle, M. A., Somerville, C., Kende, H. Insensitivity to ethylene conferred by a dominant Mutation in Arabidopsis thaliana. Science. 241 (4869), 1086-1089 (1988).
  6. Hamilton, A. J., Bouzayen, M., Grierson, D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc. Natl. Acad. Sci. 88 (16), 7434-7437 (1991).
  7. Kim, J. Assessment of ethylene removal with Pseudomonas strains. J. Hazard. Mater. 131 (3), 131-136 (2006).
  8. Kim, H. E., Shitashiro, M., Kuroda, A., Takiguchi, N., Kato, J. Ethylene chemotaxis in Pseudomonas aeruginosa and other Pseudomonas species. Microbes Environ. 22 (2), 186-189 (2007).
  9. Augimeri, R. V., Strap, J. L. The phytohormone ethylene enhances bacterial cellulose production, regulates CRP/FNRKx transcription and causes differential gene expression within the cellulose synthesis operon of Komagataeibacter (Gluconacetobacter) xylinus ATCC 53582. Front. Microbiol. 6, 1459 (2015).
  10. Zhang, W., Wen, C. K. Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon. Plant Physiol. Biochem. 48 (1), 45-53 (2010).
  11. Zhang, W., Hu, W., Wen, C. K. Ethylene preparation and its application to physiological experiments. Plant Signal. Behav. 5 (4), 453-457 (2010).
  12. Warner, H. L., Leopold, A. C. Ethylene evolution from 2-chloroethylphosphonic acid. Plant Physiol. 44 (1), 156-158 (1969).
  13. Biddle, E., Kerfoot, D. G. S., Kho, Y. H., Russell, K. E. Kinetic studies of the thermal decomposition of 2-chloroethylphosphonic acid in aqueous solution. Plant Physiol. 58 (5), 700-702 (1976).
  14. Klein, I., Lavee, S., Ben-Tal, Y. Effect of water vapor pressure on the thermal decomposition of 2-chloroethylphosphonic acid. Plant Physiol. 63 (3), 474-477 (1979).
  15. Murashige, T., Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15 (3), 473-497 (1962).
  16. Schramm, M., Hestrin, S. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Microbiol. 11 (1), 123-129 (1954).
  17. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9 (7), 671-675 (2012).
  18. Ciolacu, D., Ciolacu, F., Popa, V. I. Amorphous cellulose-structure and characterization. Cellul. Chem. Technol. 45 (1), 13-21 (2011).
check_url/fr/54682?article_type=t

Play Video

Citer Cet Article
Augimeri, R. V., Varley, A. J., Strap, J. L. Utilizing the Ethylene-releasing Compound, 2-Chloroethylphosphonic Acid, as a Tool to Study Ethylene Response in Bacteria. J. Vis. Exp. (117), e54682, doi:10.3791/54682 (2016).

View Video