Summary

蛍光顕微鏡でストロミュール頻度を可視化

Published: November 23, 2016
doi:

Summary

Protocols to investigate the dynamics of chloroplast stromules, the stroma-filled tubules that extend from the surface of chloroplasts, are described.

Abstract

Stromules, or “stroma-filled tubules”, are narrow, tubular extensions from the surface of the chloroplast that are universally observed in plant cells but whose functions remain mysterious. Alongside growing attention on the role of chloroplasts in coordinating plant responses to stress, interest in stromules and their relationship to chloroplast signaling dynamics has increased in recent years, aided by advances in fluorescence microscopy and protein fluorophores that allow for rapid, accurate visualization of stromule dynamics. Here, we provide detailed protocols to assay stromule frequency in the epidermal chloroplasts of Nicotiana benthamiana, an excellent model system for investigating chloroplast stromule biology. We also provide methods for visualizing chloroplast stromules in vitro by extracting chloroplasts from leaves. Finally, we outline sampling strategies and statistical approaches to analyze differences in stromule frequencies in response to stimuli, such as environmental stress, chemical treatments, or gene silencing. Researchers can use these protocols as a starting point to develop new methods for innovative experiments to explore how and why chloroplasts make stromules.

Introduction

Chloroplasts are dynamic organelles in plant cells responsible for photosynthesis and a host of other metabolic processes. Signaling pathways from the chloroplast also exert significant influence on plant physiology and development, coordinating plant responses to environmental stress, pathogens, and even leaf shape1-6. Recently, biologists have gained interest in a poorly understood aspect of chloroplast structure: stromules, very thin stroma-filled tubules that extend from the surface of the chloroplast7.

The biological functions of stromules remain unknown, although stromule frequency is known to vary in response to environmental stimuli7-9, and stromules may be capable of transmitting signaling molecules between organelles6. All types of plastids (not only the green, photosynthetic chloroplasts, but also clear leucoplasts, starch-filled amyloplasts, and pigmented chromoplasts, to name a few types of plastids) make stromules, and stromules are found in all land plant species that have been examined to date. Stromules can extend and retract dynamically, appearing or disappearing within seconds, or they can remain relatively stationary for long times. One of the major hurdles facing stromule biologists is that stromules are often studied using dramatically different methods, tissues, and species, making comparisons across the stromule biology literature difficult. Going forward, standard practices and thorough descriptions of the experimental systems used to study stromules will be critical to discovering the function of these ubiquitous features of chloroplast morphology.

Here we describe methods for visualizing stromule formation in the epidermal chloroplasts of Nicotiana benthamiana leaves. In the mesophyll, chloroplasts are densely packed into large, three-dimensional cells, which makes it difficult to accurately and rapidly visualize stromules by confocal microscopy. By contrast, epidermal cells are relatively flat, contain fewer chloroplasts, and are at the surface of the leaf, allowing for easy and rapid visualization of stromules. N. benthamiana is an ideal model system for these experiments because, unlike many plant species, all cells in the epidermis of N. benthamiana make chloroplasts10. In the epidermis of most plants, including Arabidopsis thaliana, only the stomatal guard cells have chloroplasts, while other epidermal cells have “leucoplasts”, plastids that are clear, relatively amorphous, and nonphotosynthetic9,11,12. Thus, whereas a single field of view of an A. thaliana epidermis might show only a handful of chloroplasts in a pair of guard cells, a field of view of an N. benthamiana epidermis will include dozens or even hundreds of chloroplasts. All of the methods described here, however, can be modified to investigate other questions in stromule biology; for example, we have used the same approach to study leucoplast stromules of A. thaliana9.

Protocol

注:このプロトコルのために、我々はNの表皮にストロミュール周波数を測定することに焦点を当てていますベンタミアナの葉。 FNRtp:EGFP 13とNRIP1:セルリアン 6いくつかの安定したトランスジェニック系統は、PRO 35Sを含め、この目的のために使用することができる生成されています。これらの線の両方が広範囲の条件の下で成長した…

Representative Results

このプロトコルは、若いNの子葉に一日で、夜はストロミュール周波数を視覚化するために使用されましたベンサミアナタバコの苗。 Z-スタックからのスライスは、単一の画像( 図1A)に併合されました。間質が( 図1B)、黒表示されるように、視覚的な目的のために、その画像は彩度と反転しました。葉緑体は全くstromule…

Discussion

stromulesを調査すると、三つの重要な要因は全体で考えなければならない:植物組織の(ⅰ)操作は最小限に抑える必要があり、(ii)の実験システムの一貫性が保たれなければならない、および(iii)サンプリング戦略は慎重に計画する必要があります堅牢な、再現性のあるデータが分析されていることを確認します。

Stromulesが著しく動的である:彼らは拡張し、顕微?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

J.O.B. and A.M.R. were supported by predoctoral fellowships from the National Science Foundation.

Materials

Hepes Sigma-Aldrich H3375
NaOH Fischer-Scientific S320-1
Sorbitol Sigma-Aldrich S1876
EDTA Fischer-Biotech BP121
MnCl2 Sigma-Aldrich 221279
MgCl2 Sigma-Aldrich M0250
KCl Sigma-Aldrich P3911
NaCl Sigma-Aldrich S9625
Laser Scanning Confocal Microscope  Carl Zeiss Inc Model: LSM710
Carboxyfluorescein diacetate (CFDA) Sigma-Aldrich 21879 
Dimethyl sulfoxide (DMSO) EMD MX1458-6
Waring blender Waring  Model: 31BL92
Fiji fiji.sc Open-source software for analyzing biological images

References

  1. Koussevitzky, S., et al. Signals from chloroplasts converge to regulate nuclear gene expression. Science. 316 (5825), 715-719 (2007).
  2. Burch-Smith, T. M., Brunkard, J. O., Choi, Y. G., Zambryski, P. C. PNAS Plus: Organelle-nucleus cross-talk regulates plant intercellular communication via plasmodesmata. Proc. Natl. Acad. Sci. USA. 108 (51), E1451-E1460 (2011).
  3. Stonebloom, S., Brunkard, J. O., Cheung, A. C., Jiang, K., Feldman, L., Zambryski, P. Redox states of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata. Plant Physiol. 158 (1), 190-199 (2012).
  4. Nomura, H., et al. Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat. Commun. 3, 926 (2012).
  5. Avendaño-Vázquez, A. -. O., et al. An uncharacterized apocarotenoid-derived signal generated in ζ-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis. Plant Cell. 26 (June), 2524-2537 (2014).
  6. Caplan, J. L., et al. Chloroplast stromules runction during innate immunity. Dev. Cell. 34 (1), 45-57 (2015).
  7. Hanson, M. R., Sattarzadeh, A. Stromules: recent insights into a long neglected feature of plastid morphology and function. Plant Physiol. 155 (4), 1486-1492 (2011).
  8. Gray, J. C., et al. Plastid stromules are induced by stress treatments acting through abscisic acid. Plant J. 69 (3), 387-398 (2012).
  9. Brunkard, J., Runkel, A., Zambryski, P. Chloroplasts extend stromules independently and in response to internal redox signals. Proc. Natl. Acad. Sci. USA. 112 (32), 10044-10049 (2015).
  10. Dupree, P., Pwee, K. -. H., Gray, J. C. Expression of photosynthesis gene-promoter fusions in leaf epidermal cells of transgenic tobacco plants. Plant J. 1 (1), 115-120 (1991).
  11. Charuvi, D., Kiss, V., Nevo, R., Shimoni, E., Adam, Z., Reich, Z. Gain and loss of photosynthetic membranes during plastid differentiation in the shoot apex of Arabidopsis. Plant Cell. 24 (3), 1143-1157 (2012).
  12. Chiang, Y. -. H., et al. Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth, and division in Arabidopsis. Plant Physiol. 160 (1), 332-348 (2012).
  13. Schattat, M., Barton, K., Baudisch, B., Klösgen, R. B., Mathur, J. Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics. Plant Physiol. 155 (4), 1667-1677 (2011).
  14. Erickson, J. L., et al. Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays. BMC Plant Biol. 14 (1), 127 (2014).
  15. Ho, J., Theg, S. M. The formation of stromules in vitro from chloroplasts isolated from Nicotiana benthamiana. PLoS One. 11 (2), e0146489 (2016).
  16. Brunkard, J. O., Burch-Smith, T. M., Runkel, A. M., Zambryski, P. Investigating plasmodesmata genetics with virus-induced gene silencing and an Agrobacterium-mediated GFP movement assay. Method. Mol. Biol. , 185-198 (2015).
  17. Schattat, M. H., Klösgen, R. B. Induction of stromule formation by extracellular sucrose and glucose in epidermal leaf tissue of Arabidopsis thaliana. BMC Plant Biol. 11, 115 (2011).
  18. Joly, D., Carpentier, R. Rapid isolation of intact chloroplasts from spinach leaves. Method. Mol. Biol. 684, 321-325 (2011).
  19. Waters, M. T., Fray, R. G., Pyke, K. A. Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell. Plant J. 39 (4), 655-667 (2004).
check_url/fr/54692?article_type=t

Play Video

Citer Cet Article
Brunkard, J. O., Runkel, A. M., Zambryski, P. Visualizing Stromule Frequency with Fluorescence Microscopy. J. Vis. Exp. (117), e54692, doi:10.3791/54692 (2016).

View Video