Summary

横慢性頭蓋窓の準備を有効<em>インビボ</em>マウスの遠位中大脳動脈閉塞後に観測

Published: December 29, 2016
doi:

Summary

遠位中大脳動脈の分岐(MCAO)の外科的閉塞は実験的ストローク研究で頻繁に使用されるモデルです。この原稿は、マウスの縦生体顕微鏡検査のための機会を提供しています横頭蓋窓の挿入と組み合わせて永久にMCAoの基本的な手法について説明します。

Abstract

局所脳虚血( すなわち、虚血性脳卒中)は、神経機能の深刻な損失に、その結果、運動および認知障害のホストにつながる、主要な脳損傷を引き起こす可能性があります。ストロークが1世界中の長期障害と死の主な原因の一つであるとして、その高い有病率は、深刻な健康負担をもたらします。神経機能の回復は、ほとんどの場合、唯一の部分です。これまでに、治療オプションが原因で血栓溶解2,3ための狭い時間ウィンドウに、特に、非常に制限されます。脳卒中からの回復を加速するための方法を決定することは、プライム医療目標です。しかしながら、これは、回復プロセス中に不十分な機構的洞察により妨げられてきました。実験ストローク研究者が頻繁に局所脳虚血の齧歯類モデルを採用しています。急性期を越えて、脳卒中の研究は、脳虚血次亜急性および慢性期にますます集中しています。ほとんどのストロークの研究者は、永続的またはトラン適用しますマウスまたはラットにおけるMCAのトランジェント閉塞。患者では、MCAの閉塞は、虚血性脳卒中4の最も頻繁な原因の一つです。フィラメントモデルを用いて、MCAの近位閉塞のほか、遠位MCAの外科的閉塞は実験的ストローク研究5の中で最も頻繁に使用されるモデルは、おそらくです。 MCAブランチ(lenticulo-線条動脈の分岐まで)遠位の閉塞は、通常、線条体を惜しみ、主に新皮質に影響を与えます。血管閉塞は、永久的または一時的であることができます。長期転帰に対する病変体積と非常に低い死亡率の高い再現性は、このモデルの主な利点です。ここでは、矢状静脈洞に慢性頭蓋窓(CW)準備横を実行するために、その後どのように開頭術アプローチを使用して、ウィンドウの下に遠位脳卒中を引き起こす外科的方法を示しています。このアプローチは、ビアの虚血後の急性および慢性の変化の連続画像形成のために適用することができます落射照明、共焦点レーザー走査、及び二光子生体顕微鏡。

Introduction

Stroke is among the principal causes of long-term disability and death worldwide1, coming second after coronary heart disease. In addition, stroke is the primary cause of long-term disability, underscoring its tremendous socioeconomic impact6-8. Beyond acute treatment, investigating new approaches and mechanisms to accelerate and enhance recovery after stroke remains a prime medical goal7.

In the last few decades, data from experimental stroke research has contributed substantially to understanding the complex pathophysiological cascades triggered by ischemia9,10. Excitotoxicity, apoptosis, peri-infarct depolarization, and inflammation have been identified as the most relevant mediators of cell death following focal cerebral ischemia. Moreover, using animal models of cerebral ischemia, important concepts, diagnostic modalities, and therapeutic approaches have been developed and validated (e.g., “penumbra” and thrombolysis)11.

The availability of experimental stroke models, combined with non-invasive imaging modalities (e.g., magnetic resonance imaging (MRI), computed tomography, or laser speckle contrast analysis), enables the researcher to investigate hyperacute and chronic pathophysiological changes induced by the ischemic insult in a longitudinal manner12. Along with studying the spatiotemporal profile of the evolving lesion, changes resembling neuronal plasticity can be investigated and correlated to functional outcomes and histological findings. Within the last few years, further methodological advances have been made using the combination of cerebral ischemia models and in vivo microscopy via cranial windows13. These new techniques allow investigators to analyze the neurovascular unit at the cellular and molecular level, with great analytic power in the acute, subacute, and chronic phases following focal cerebral ischemia14. Moreover, in vivo microscopy imaging of microcirculatory dynamics has revealed novel aspects of cerebral microvasculature function and angioarchitecture, with significant pathophysiological relevance15-17.

In this protocol, we present how to perform a chronic CW preparation lateral to the sagittal sinus and how to surgically induce a distal stroke underneath the window. This mouse model can be applied to sequential imaging of acute, subacute, and chronic changes following focal cerebral ischemia via epi-illuminating, confocal laser scanning, and two-photon intravital microscopy.

Protocol

倫理の声明:動物を対象とした実験は、該当する場合、Landesamt fuerお大事にウントSoziales、ベルリン、ドイツ(G0298 / 13)とARRIVE基準によって定められたガイドラインおよび規則に従って行いました。 12週齢の雄のC57BL / 6Jマウスに本研究では、10-に使用しました。 1.横慢性頭蓋窓の準備皮下ケタミンの注射(90 mgの/ kg)およびキシラジン(10mg / kg)で麻酔を行いま?…

Representative Results

タイムライン及び代表的な結果を図2および図3に示されています。上矢状静脈洞( 図2 B、C、D)経験豊富な外科医によって行われる非常に低い死亡率および罹患率率の結果に小さな頭蓋窓の横で頭蓋窓の準備、。 10匹の動物の全てが生存し、そしてすべての慢性CWも28日目、手術後、高品質の画像化に使用することができます。創?…

Discussion

ストロークが1世界中の長期障害と死の主な原因の一つです。急性期治療を超えて、脳卒中後の回復を促進し、強化するための新しいアプローチやメカニズムを調査すると、プライム医療目標7のまま。実験ストローク研究者が頻繁に局所脳虚血の齧歯類モデルを採用しています。実際には、一時的または恒久的にMCAoを誘導するモデルは、患者4における局所脳虚血の最…

Divulgations

The authors have nothing to disclose.

Acknowledgements

VP is a participant in the Charité Clinical Scientist Program, funded by the Charité – Universitätsmedizin Berlin and the Berlin Institute of Health. TB is an SNSF PostDoc Mobility fellow. The authors receive grant support from EinsteinStiftung/A-2012-153 to PV.

Materials

Binocular surgical microscope Zeiss Stemi 2000 C
Light source for microscope Zeiss CL 6000 LED
Heating pad with rectal probe FST 21061-10
Stereotactic frame Kopf Model 930
Anaethesia system for isoflurane Draeger
Isoflurane Abott
Dumont forceps #5 FST 11251-10
Dumont forceps #7 FST 11271-30
Bipolar Forceps Erbe 20195-501
Bipolar Forceps  Erbe                              20195-022
Microdrill FST                              18000-17         
Needle holder FST 12010-14
5-0 silk suture Feuerstein, Suprama
7-0 silk suture Feuerstein,Suprama
8-0 silk suture Feuerstein, Suprama
Veterinary Recovery Chamber Peco Services V1200

References

  1. Mukherjee, D., Patil, C. G. Epidemiology and the global burden of stroke. World Neurosurg. 76 (6), 85-90 (2011).
  2. Ebinger, M., Prüss, H., et al. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: a randomized clinical trial. JAMA. 311 (16), 1622-1631 (2014).
  3. Ebinger, M., Lindenlaub, S., et al. Prehospital thrombolysis: a manual from Berlin. J vis Exp. (81), e50534 (2013).
  4. Bogousslavsky, J., Van Melle, G., Regli, F. The Lausanne Stroke Registry: analysis of 1,000 consecutive patients with first stroke. Stroke. 19 (9), 1083-1092 (1988).
  5. Engel, O., Kolodziej, S., Dirnagl, U., Prinz, V. Modeling stroke in mice – middle cerebral artery occlusion with the filament model. J Vis Exp. (47), (2011).
  6. Donnan, G. A., Fisher, M., Macleod, M., Davis, S. M. Stroke. Lancet. 371 (9624), 1612-1623 (2008).
  7. Meairs, S., Wahlgren, N., et al. Stroke research priorities for the next decade–A representative view of the European scientific community. Cerebrovasc Dis. 22 (2-3), 75-82 (2006).
  8. Rosamond, W., Flegal, K., et al. Heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 115 (5), 69-171 (2007).
  9. Moskowitz, M. A., Lo, E. H., Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron. 67 (2), 181-198 (2010).
  10. Dirnagl, U., Iadecola, C., Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22 (9), 391-397 (1999).
  11. Dirnagl, U., Endres, M. Found in Translation: Preclinical Stroke Research Predicts Human Pathophysiology, Clinical Phenotypes, and Therapeutic Outcomes. Stroke. , (2014).
  12. Prinz, V., Hetzer, A. -. M., et al. MRI heralds secondary nigral lesion after brain ischemia in mice: a secondary time window for neuroprotection. J Cereb Blood Flow Metab. , (2015).
  13. Shih, A. Y., Mateo, C., Drew, P. J., Tsai, P. S., Kleinfeld, D. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp. (61), (2012).
  14. Holtmaat, A., Bonhoeffer, T., et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc. 4 (8), 1128-1144 (2009).
  15. Iadecola, C., Dirnagl, U. The microcircualtion–fantastic voyage: introduction. Stroke. 44 (6), 83 (2013).
  16. Blinder, P., Tsai, P. S., Kaufhold, J. P., Knutsen, P. M., Suhl, H., Kleinfeld, D. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat Neurosc. 16 (7), 889-897 (2013).
  17. Shih, A. Y., Driscoll, J. D., Drew, P. J., Nishimura, N., Schaffer, C. B., Kleinfeld, D. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab. 32 (7), 1277-1309 (2012).
  18. Cabrales, P., Carvalho, L. J. M. Intravital microscopy of the mouse brain microcirculation using a closed cranial window. J Vis Exp. (45), (2010).
  19. Rosell, A., Agin, V., et al. Distal occlusion of the middle cerebral artery in mice: are we ready to assess long-term functional outcome. Transl Stroke Res. 4 (3), 297-307 (2013).
  20. Dorand, R. D., Barkauskas, D. S., Evans, T. A., Petrosiute, A., Huang, A. Y. Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex. Intravital. 3 (2), (2014).
  21. Balkaya, M., et al. Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow Metab. 33 (3), 330-338 (2013).
  22. Balkaya, M., Kröber, J., Gertz, K., Peruzzaro, S., Endres, M. Characterization of long-term functional outcome in a murine model of mild brain ischemia. J Neurosci Methods. 213 (2), 179-187 (2013).
  23. Freret, T., Bouet, V., et al. Behavioral deficits after distal focal cerebral ischemia in mice: Usefulness of adhesive removal test. Beh Neurosci. 123 (1), 224-230 (2009).
  24. Liu, S., Zhen, G., Meloni, B. P., Campbell, K., Winn, H. R. RODENT STROKE MODEL GUIDELINES FOR PRECLINICAL STROKE TRIALS (1ST EDITION). J Exp Stroke Trans Med. 2 (2), 2-27 (2009).
  25. Florian, B., Vintilescu, R., et al. Long-term hypothermia reduces infarct volume in aged rats after focal ischemia. Neurosci Lett. 438 (2), 180-185 (2008).
  26. Noor, R., Wang, C. X., Shuaib, A. Effects of hyperthermia on infarct volume in focal embolic model of cerebral ischemia in rats. Neurosci Lett. 349 (2), 130-132 (2003).
  27. Barber, P. A., Hoyte, L., Colbourne, F., Buchan, A. M. Temperature-regulated model of focal ischemia in the mouse: a study with histopathological and behavioral outcomes. Stroke. 35 (7), 1720-1725 (2004).
  28. Shin, H. K., Nishimura, M., et al. Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke. 39 (5), 1548-1555 (2008).
  29. Kapinya, K. J., Prass, K., Dirnagl, U. Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism. Neuroreport. 13 (11), 1431-1435 (2002).
  30. Gertz, K., Priller, J., et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res. 99 (10), 1132-1140 (2006).
  31. Dirnagl, U. Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab. 26 (12), 1465-1478 (2006).

Play Video

Citer Cet Article
Bayerl, S. H., Nieminen-Kelhä, M., Broggini, T., Vajkoczy, P., Prinz, V. Lateral Chronic Cranial Window Preparation Enables In Vivo Observation Following Distal Middle Cerebral Artery Occlusion in Mice. J. Vis. Exp. (118), e54701, doi:10.3791/54701 (2016).

View Video