Summary

Højt fedtindhold Fodring Paradigme for Larver Zebrafisk: Fodring, Levende Imaging, og kvantificering af fødeindtagelse

Published: October 27, 2016
doi:

Summary

Zebrafish are emerging as a valuable model of dietary lipid processing and metabolic disease. Described are protocols of lipid-rich larval feeds, live imaging of dietary fluorescent lipid analogs, and quantification of food intake. These techniques can be applied to a variety of screening, imaging, and hypothesis driven inquiry techniques.

Abstract

Zebrafish are emerging as a model of dietary lipid processing and metabolic disease. This protocol describes how to feed larval zebrafish a lipid-rich meal, which consists of an emulsion of chicken egg yolk liposomes created by sonicating egg yolk in embryo media. Detailed instructions are provided to screen larvae for egg yolk consumption so that larvae that fail to feed will not confound experimental results. The chicken egg yolk liposomes can be spiked with fluorescent lipid analogs, including fatty acids and cholesterol, enabling both systemic and subcellular visualization of dietary lipid processing. Several methods are described to mount larvae that are conducive to short- and long-term live imaging with both upright and inverted objectives at high and low magnification. Additionally presented is an assay to quantify larval food intake by extracting the lipids of larvae fed fluorescent lipid analogs, spotting the lipids on a thin layer chromatography plate, and quantifying the fluorescence. Finally, critical aspects of the procedures, important controls, options for modifying the protocols to address specific experimental questions, and potential limitations are discussed. These techniques can be applied not only to focused, hypothesis driven inquiries, but also to a variety of screens and live imaging techniques to study dietary lipid metabolism and the control of food intake.

Introduction

De mekanismer, som tarmen regulerer kosten lipid behandling, leveren styrer komplekse lipid syntese og lipoprotein metabolisme, og hvordan disse organer arbejder med det centrale nervesystem til at styre fødeindtagelsen er ufuldstændigt forstået. Det er for biomedicinsk interesse at belyse denne biologi i lyset af de nuværende epidemier af fedme, hjertekarsygdomme, diabetes og ikke-alkoholiske fedtlever sygdom. Studier i cellekultur og mus har givet de fleste af vores forståelse af de mekanistiske relationer mellem kosten lipider og sygdomme, og zebrafisk (Danio rerio) dukker op som en ideel model til at supplere dette arbejde.

Zebrafisk har lignende gastrointestinale (GI) organer, lipid metabolisme, og lipoprotein transport til højere hvirveldyr 1,2, udvikler sig hurtigt, og er genetisk medgørlig. Den optiske klarhed af larvestadiet zebrafisk letter in vivo-undersøgelser, en particular fordel for studiet af GI-systemet som sin ekstracellulære miljø (dvs. galde, mikrobiota, endokrine signalering) er næsten umuligt at modellere ex vivo. I overensstemmelse, en mængde forskning kombinerer den genetiske sporbarhed og fremmende at leve billeddannelse af zebrafisk larver med en bred vifte af kosten manipulationer (højt fedtindhold 3,4, kolesterol 5 og -carbohydrate kost 6,7), og modeller af hjertekarsygdomme 8, diabetes 9,10, leversteatose 11-13, og fedme 14-16, dukker til at give et væld af metaboliske indsigter.

Et væsentligt aspekt af overgangen larve zebrafisk i metabolisk forskning er optimering af teknikker udviklet i andre dyremodeller til zebrafisk og udvikling af nye analyser, der udnytter de unikke styrker i zebrafisk. Denne protokol præsenterer teknikker udviklet og optimeret til at fodre larver zebrafisk en Lipid-rige måltid, visualisere kosten lipid behandling fra hele kroppen til subcellulær opløsning, og måle fødeindtagelse. Kylling æggeblomme blev valgt til at komponere lipid-rige måltid som det indeholder høje niveauer af fedt og kolesterol (lipider komponere ~ 58% af kylling æggeblomme, hvoraf ~ 5% er cholesterol, 60% er triglycerider, og 35% er phospholipider ). Kylling æggeblomme giver mere fedt end typiske kommercielle zebrafisk mikropellet fødevarer (~ 15% lipider) og den fordel, at det er en standardiseret foder med kendte procentdele af specifikke fedtsyrer arter, som zebrafisk kost og fodring regimenter ikke er standardiseret på tværs labs 17. Desuden fluorescerende lipid-analoger tilvejebragt i æggeblommen visualisere transport og akkumulering af ernæringsmæssige lipider 18, billed- cellulære komponenter, herunder lipiddråber Ved at handle både som vitale farvestoffer 3 og gennem kovalent inkorporering i komplekse lipider, undersøge metabolisme gennem tyndtlagskromatografi (TLC) 19 </sup> Og højtydende væskekromatografi (HPLC) (SAF upublicerede data), og tilvejebringe en kvantitativ analyse for samlede fødeindtagelse 20.

Protocol

Disse protokoller er blevet godkendt af Carnegie Institution for Science Institutional Animal Care og brug Udvalg (protokol nr. 139). 1. Dyrepræparation Vedligehold voksne og larver ved 28 ° C på en 14 timer: 10 timers lys: mørke cyklus. Feed voksne to gange dagligt med Shell fri Artemia (Decapsulated, ikke-skravering, der starter ved 14 dpf) og kommercielle mikropelleter. Disse protokoller er optimeret for brug af 6-7 dpf larver opsamlet ved naturlig gydning af AB baggrund. Pro…

Representative Results

Når fodret med en rocker ved 29-31 ° C, vil de fleste af sunde larver (≥95%) spise inden 1 time. Ved indtagelse æggeblommen emulsion, larve tarmen bliver mørkere i farven. Meget mørke tarme kan observeres ved 2 timer (figur 1). Hvis larver er unfed eller undlader at fodre, tarmen forbliver klar. Larver fodret æggehvide udviser en udspilede tarmlumen, som ikke mørkere i farven. <img alt="figur 1" src="/files/ftp_upload/54735/54735fig1….

Discussion

De her beskrevne teknikker gør det muligt for forskerne at behandle larvernes zebrafisk med en lipid-rige foder, visualisere kosten lipid forarbejdning i levende larver, og kvantificere larvernes fødeindtagelse. For at sikre succes, bør man være særlig opmærksom på flere kritiske trin. Kommercielle hønseæg varierer; at minimere eventuel variabilitet vi udføre alle assays på økologiske æg fra bur-fri kyllinger, som ikke er beriget med omega-3 fedtsyrer. Lavere fodring priserne kan observeres i fisk yngre end…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors thank Meng-Chieh Shen for images, Jennifer Anderson for providing helpful comments on the manuscript, and members of the Farber laboratory for their contributions in developing these techniques. This study was funded by NIDDK-NIH award RO1DK093399 (S.A.F.), RO1GM63904 (The Zebrafish Functional Genomics Consortium: PI Stephen Ekker and Co-PI S.A.F), and F32DK096786 (J.P.O.). This content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. Additional support was provided by the G. Harold and Leila Y. Mathers Charitable Foundation to the laboratory of S.A.F and the Carnegie Institution for Science endowment.

Materials

Tricaine (ethyl 3-aminobenzoate methanesulofnate salt) Sigma-Aldrich A5040-25G Anesthesia for larval zebrafish
Chicken eggs N/A N/A Organic, cage-free eggs, not enriched for omege-3 fatty acids
Ultrasonic processor 3000 sonicator Misonix, Inc. S-3000 To make egg yolk liposomes
Sonabox acoustic enclosure Misonix, Inc. 432B To make egg yolk liposomes
1/8” tapered microtip Misonix, Inc. 419 To make egg yolk liposomes
Amber vials (4 ml, glass) National Scientific 13-425 Lipid storage; includes vials, open-top caps, and cap septa
Incu-Shaker Mini  Benchmark 1222U12 Incubated shaker for feeds
BODIPY FL C16  Thermo Fisher Scientific D3821 Fluorescent lipid analog; (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Hexadecanoic Acid)
BODIPY FL C12  Thermo Fisher Scientific D3822 Fluorescent lipid analog; (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Dodecanoic Acid)
BODIPY FL C5  Thermo Fisher Scientific D3834 Fluorescent lipid analog; (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Pentanoic Acid)
BODIPY FL C5 Thermo Fisher Scientific D2183 Fluorescent lipid analog; (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Propionic Acid)
TopFluor cholesterol  Avanti Polar Lipids Inc. 810255 Fluorescent lipid analog; 23-(dipyrrometheneboron difluoride)-24-norcholesterol
Fatty acid-free BSA Sigma-Aldrich A0281-1G For TopFluor cholesterol solubilization
Methyl cellulose Sigma-Aldrich M0387 Mounting media for live larval imaging; 75 x 25 x 1 mm
Low melt agarose Thermo Fisher Scientific BP165-25 Mounting media for live larval imaging; 22 x 30
VWR microscope slides  VWR  16004-422 Mounting larvae for live imaging
Coverslips  Cover Glass 12-544A Mounting larvae for live imaging
Super glue Loctite LOC01-30379 Mounting larvae for live imaging
FluoroDish (glass bottom dish) World Precision Instruments, Inc.  FD35-100 Mounting larvae for live imaging; 35 mm dish, 23 mm glass, 0.17 mm glass thickness  
Confocal microscope Leica Microsytems SP-2, SP-5 Microscope for high magnification live imaging
Stereoscope Nikon SM21500 Microscope for low magnification live imaging
Glass culture tubes  Kimble 73500-13100 Lipid extraction; (13 x 100 mm; 13 ml)
Savant SpeedVac Plus  ThermoQuest SC210A Lipid extraction
Channeled TLC plates Whatman Scientific WC4855-821 Food intake assay; LK5D Silica Gel 150 A, 20 x 20 cm, 250 um thick; Discontinued
Channeled TLC plates Analtech, Inc. 66911 Food intake assay; Direct replacement for Whatman Scientific TLC plates
Typhoon 9410 Variable Mode Imager GE Healthcare 9410 Fluorescent plate reader for food intake assay
ImageQuant software GE Healthcare 29000605 Analysis of food intake assay
5 3/4’ Wide bore, borosilicate disposable pasteur pipets    Kimble 63A53WT Transfering larvae

References

  1. Carten, J. D., Farber, S. A. A new model system swims into focus: using the zebrafish to visualize intestinal metabolism in vivo. Clin Lipidol. 4 (4), 501 (2009).
  2. Babin, P. J., Vernier, J. M. Plasma lipoproteins in fish. J Lipid Res. 30 (4), 467-489 (1989).
  3. Carten, J. D., Bradford, M. K., Farber, S. A. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish. Dev Biol. 360 (2), 276-285 (2011).
  4. Marza, E., et al. Developmental expression and nutritional regulation of a zebrafish gene homologous to mammalian microsomal triglyceride transfer protein large subunit. Dev Dyn. 232 (2), 506-518 (2005).
  5. Stoletov, K., et al. Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circ Res. 104 (8), 952-960 (2009).
  6. Fang, L., et al. Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio. Br J Nutr. 111 (5), 808-818 (2014).
  7. Wang, Z., Mao, Y., Cui, T., Tang, D., Wang, X. L. Impact of a combined high cholesterol diet and high glucose environment on vasculature. PLoS One. 8 (12), 81485 (2013).
  8. Fang, L., et al. In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish. J Clin Invest. 121 (12), 4861-4869 (2011).
  9. Curado, S., et al. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn. 236 (4), 1025-1035 (2007).
  10. Pisharath, H., Rhee, J. M., Swanson, M. A., Leach, S. D., Parsons, M. J. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev. 124 (3), 218-229 (2007).
  11. Passeri, M. J., Cinaroglu, A., Gao, C., Sadler, K. C. Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology. 49 (2), 443-452 (2009).
  12. Sadler, K. C., Amsterdam, A., Soroka, C., Boyer, J., Hopkins, N. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development. 132 (15), 3561-3572 (2005).
  13. Matthews, R. P., et al. TNFalpha-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S-adenosylhomocysteine hydrolase. Development. 136 (5), 865-875 (2009).
  14. Oka, T., et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 10, 21 (2010).
  15. Chu, C. Y., et al. Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One. 7 (5), 36474 (2012).
  16. Song, Y., Cone, R. D. Creation of a genetic model of obesity in a teleost. FASEB J. 21 (9), 2042-2049 (2007).
  17. Watts, S. A., Powell, M., D’Abramo, L. R. Fundamental approaches to the study of zebrafish nutrition. ILAR J. 53 (2), 144-160 (2012).
  18. Farber, S. A., et al. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science. 292 (5520), 1385-1388 (2001).
  19. Miyares, R. L., de Rezende, V. B., Farber, S. A. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism. Dis Model Mech. 7 (7), 915-927 (2014).
  20. Otis, J. P., et al. Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech. 8 (3), 295-309 (2015).
  21. Bligh, E., Dyer, W. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-918 (1959).
  22. Otis, J. P., Farber, S. A. Imaging vertebrate digestive function and lipid metabolism. Drug Discov Today Dis Models. 10 (1), (2013).
  23. Andre, M., et al. Intestinal fatty acid binding protein gene expression reveals the cephalocaudal patterning during zebrafish gut morphogenesis. Int J Dev Biol. 44 (2), 249-252 (2000).
  24. Shimada, Y., Hirano, M., Nishimura, Y., Tanaka, T. A high-throughput fluorescence-based assay system for appetite-regulating gene and drug screening. PLoS One. 7 (12), 52549 (2012).
check_url/fr/54735?article_type=t

Play Video

Citer Cet Article
Otis, J. P., Farber, S. A. High-fat Feeding Paradigm for Larval Zebrafish: Feeding, Live Imaging, and Quantification of Food Intake. J. Vis. Exp. (116), e54735, doi:10.3791/54735 (2016).

View Video