Summary

经胸斑点跟踪超声心动图左室心肌变形的定量评价

Published: October 20, 2016
doi:

Summary

斑点跟踪超声心动图是全球和区域心肌的性能定量评估一个新兴的诊断成像技术。标准视图超声心动图的运动图像被记录和变形参数由心肌的B模式图像中散斑的自动化连续帧接一帧的跟踪和运动分析随后测定。

Abstract

常规超声心动图的价值是通过个体间影像解译,因此很大程度上取决于考官的专业知识差异的限制。斑点跟踪超声心动图(STE)是可用于定量评估区域和全球收缩和舒张心肌表现一个有前途的,但技术上的挑战的方法。心肌应变和应变率可以在所有三个维度来测量 – 径向,周向,纵向 – 心肌变形。标准横截面二维B模式图像被记录并随后由心肌内散斑自动化连续帧接一帧的跟踪和运动分析后处理。影像记录数字环路和同步到3导心电图用于定时。纵向变形在心尖4-,3-和2-室次评估。周向和径向的变形是在parasterna测L类短期轴平面。

最佳的图像质量和准确的组织追踪是最重要的正确判断心肌的性能参数。在一个健康的志愿者利用经胸STE,本文章的基本步骤和定量超声心动图心肌变形分析潜在的陷阱的详细大纲。

Introduction

心血管内科的科学和临床方案是,而不是简单的多,并连续变量和临界值以上处理“是或否”的算法。成像技术已经发展到能够评估在不断增加的细节心脏功能。斑点跟踪超声心动图(STE)是心肌性能的定量评价一个新兴的诊断工具。虽然常规超声心动图是主观影像解译和个人考官的专业知识很强的依赖性有限,STE已被引入作为一个可重复的,更客观的方法来量化全球和区域的收缩和舒张功能1,2。

左心室(LV)心肌变形 – 纵向和圆周缩短以及在收缩和舒张反之亦然径向增厚 – 可被描述测量参数应变(ε)和斯特拉在率(SR)。 ε是在心肌长度的量纲变化百分比。 SR为ε3的时间导数。心肌功能的这些重要指标已显示出能够识别心肌缺血4,预测响应于心脏再同步治疗5和检测亚临床心肌功能障碍而常规超声心动图参数仍然正常6。在系统的荟萃分析,全球纵向ε,最常用的定量左室收缩功能参数,已被证明对主要不良心脏事件的预测则左室射血分数(EF),目前的黄金标准卓越的预后价值左室收缩功能7的评估。即使是很细微的变化,如对无症状患者心肌力学短期代谢变化的影响可以利用STE 8进行检测。

从技术上讲,采用STEš灰度2D或记录在标准的超声心动图的看法3D B模式动态影像。几个连续的心动周期被记录在心尖4-,3-和2-室次测量纵向变形和在周向和径向变形9胸骨旁短轴图。此外,通过在二尖瓣的水平捕获短轴视图,乳头肌和顶点,LV扭转可以评估3。随后向图像采集和存储作为数字环路,心肌变形是在离线的工作站或超声波装置本身上测得。软件检测中所记录的灰度图像独特心肌像素图案,所谓的“斑点”,并跟踪它们在整个分析心动周期。矢量测量和变形参数随后计算。这样的区域和全球心肌变形可以在收缩和舒张用于左和右心室的两者来评估ð庭10。

Protocol

该协议内容的威滕/赫德克大学伦理委员会已经批准了道德。 1.技术要求利用配备了充足的部门数组组织谐波成像传感器的超声心动图检查设备都配有斑点追踪技术。 在图像采集,记录,并直接以超声心动图的动态影像机电活动同步连接标准的3导心电图的超声心动图设备。这是强制性的在随后的后处理分析时间的目的。连接研究受EKG和解冻超声波图像来开始检测EKG信号。 <…

Representative Results

对于心肌性能的定量评估的原则参数ε和SR。从技术上讲,所有心腔可以用STE进行分析。然而,由于斑点追踪方法大多已经用于研究LV,本文的重点是LV心肌力学。通常,纵向ε和SR是最常用评估左心室变形参数。纵向ε和SR描述心肌收缩期缩短(和舒张压延长)。因此,收缩值被注解为负数。 图1和2表示STE衍生节段性和全球ε和SR分析的好例子。最佳?…

Discussion

相对于其他方法的技术意义

目前的金标准左室收缩功能的超声心动图的评估是左室射血分数(EF)13。然而,EF的确定是基于被密切相关心肌收缩的径向分量,但不考虑的重要纵向和圆周平面的简单的方法。因此,EF简单化心肌变形的三维的复杂性。因此,EF测量不揭露细微心脏功能障碍,但只在一个相对先进的状态14检测的LV恶化。另一方面,STE?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors thank the echocardiographic study subject for volunteering in the video as well as Witten/Herdecke University and HELIOS Research Center (HRC-ID 000416 assigned to Kai O. Hensel) for funding.

Materials

Phillips iE33 ultrasound system Philips Healthcare http://www.umiultrasound.com/ultrasound-machine/philips/ie33

S5-1 broadband sector array transducer 
Philips Healthcare 5-1 MHz, http://www.usa.philips.com/healthcare/product/HC989605412081/s5-1
QLAB Advanced Quantification Software Version 10.5 Philips Healthcare Q-App: Automated Cardiac Motion Quantification (aCMQ), www.philips.com/QLAB-cardiology
Xcelera R3.3L1 (Version 3.3.1.1103)  Philips Healthcare http://www.usa.philips.com/healthcare/product/HC830038/xcelera-r41-cardiology-information-management-system

References

  1. Leischik, R., Dworrak, B., Hensel, K. Intraobserver and interobserver reproducibility for radial, circumferential and longitudinal strain echocardiography. Open Cardiovasc. Med. J. 8, 102-109 (2014).
  2. Smiseth, O. A., Torp, H., Opdahl, A., Haugaa, K. H., Urheim, S. Myocardial strain imaging: how useful is it in clinical decision making?. Eur Heart J. , (2015).
  3. Opdahl, A., Helle-Valle, T., Skulstad, H., Smiseth, O. A. Strain, strain rate, torsion, and twist: echocardiographic evaluation. Curr. Cardiol. Rep. 17, 568 (2015).
  4. Kukulski, T., et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements. A clinical study in patients undergoing coronary angioplasty. J. Am. Coll. Cardiol. 41, 810-819 (2003).
  5. Suffoletto, M. S., Dohi, K., Cannesson, M., Saba, S., Gorcsan, J. Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation. 113, 960-968 (2006).
  6. Hensel, K. O., et al. Subclinical Alterations of Cardiac Mechanics Present Early in the Course of Pediatric Type 1 Diabetes Mellitus: A Prospective Blinded Speckle Tracking Stress Echocardiography Study. J Diabetes Res. 2016, 2583747 (2016).
  7. Kalam, K., Otahal, P., Marwick, T. H. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 100, 1673-1680 (2014).
  8. Hensel, K. O., Grimmer, F., Jenke, A. C., Wirth, S., Heusch, A. The influence of real-time blood glucose levels on left ventricular myocardial strain and strain rate in pediatric patients with type 1 diabetes mellitus – a speckle tracking echocardiography study. BMC Cardiovasc. Disord. 15, 175 (2015).
  9. Kurt, M., Tanboga, I. H., Aksakal, E. Two-Dimensional Strain Imaging: Basic principles and Technical Consideration. Eurasian J Med. 46, 126-130 (2014).
  10. Cameli, M., Lisi, M., Righini, F. M., Mondillo, S. Novel echocardiographic techniques to assess left atrial size, anatomy and function. Cardiovasc. Ultrasound. 10 (4), (2012).
  11. Pellikka, P. A., Nagueh, S. F., Elhendy, A. A., Kuehl, C. A., Sawada, S. G. American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J. Am. Soc. Echocardiogr. 20, 1021-1041 (2007).
  12. Lang, R. M., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 1-39 (2015).
  13. Curtis, J. P., et al. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J. Am. Coll. Cardiol. 42, 736-742 (2003).
  14. Liebson, P. R., et al. Echocardiographic correlates of left ventricular structure among 844 mildly hypertensive men and women in the Treatment of Mild Hypertension Study (TOMHS). Circulation. 87, 476-486 (1993).
  15. Hensel, K. O., Jenke, A., Leischik, R. Speckle-tracking and tissue-Doppler stress echocardiography in arterial hypertension: a sensitive tool for detection of subclinical LV impairment. Biomed Res Int. , 472562 (2014).
  16. Gorcsan, J., Tanaka, H. Echocardiographic assessment of myocardial strain. J. Am. Coll. Cardiol. 58, 1401-1413 (2011).
  17. Holmes, A. A., Taub, C. C., Garcia, M. J., Shan, J., Slovut, D. P. Increased Apical Rotation in Severe Aortic Stenosis is Associated with Reduced Survival: A Speckle-Tracking. J. Am. Soc. Echocardiogr. , (2015).
  18. Auger, D., et al. Effect of cardiac resynchronization therapy on the sequence of mechanical activation assessed by two-dimensional radial strain imaging. Am. J. Cardiol. 113, 982-987 (2014).
  19. To, A. C., et al. Strain-time curve analysis by speckle tracking echocardiography in cardiac resynchronization therapy: Insight into the pathophysiology of responders vs. non-responders. Cardiovasc. Ultrasound. 14 (14), (2016).
  20. Seo, Y., et al. Three-dimensional propagation imaging of left ventricular activation by speckle-tracking echocardiography to predict responses to cardiac resynchronization therapy. J. Am. Soc. Echocardiogr. 28, 606-614 (2015).
  21. Trache, T., Stobe, S., Tarr, A., Pfeiffer, D., Hagendorff, A. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate. Echo Res Pract. 1, 71-83 (2014).
  22. Sanchez, A. A., et al. Effects of frame rate on two-dimensional speckle tracking-derived measurements of myocardial deformation in premature infants. Echocardiography. 32, 839-847 (2015).
  23. Hensel, K. O. Non-ischemic diabetic cardiomyopathy may initially exhibit a transient subclinical phase of hyperdynamic myocardial performance. Medical Hypotheses. 94, 7-10 (2016).

Play Video

Citer Cet Article
Hensel, K. O., Wilke, L., Heusch, A. Transthoracic Speckle Tracking Echocardiography for the Quantitative Assessment of Left Ventricular Myocardial Deformation. J. Vis. Exp. (116), e54736, doi:10.3791/54736 (2016).

View Video