Summary

基于一个钛醇盐和半导体聚合物为全可印刷有机 - 无机批量异质结太阳能电池形貌控制

Published: January 10, 2017
doi:

Summary

这里描述一种用于充分可印刷,自由富勒烯,高空气稳定,本体异质结太阳能电池基于钛的醇盐作为电子受体和电子供聚合物制造细胞的方法。此外,据报道,通过在Ti-醇单元的分子膨松控制光活性层的形态的方法。

Abstract

The photoactive layer of a typical organic thin-film bulk-heterojunction (BHJ) solar cell commonly uses fullerene derivatives as the electron-accepting material. However, fullerene derivatives are air-sensitive; therefore, air-stable material is needed as an alternative. In the present study, we propose and describe the properties of Ti-alkoxide as an alternative electron-accepting material to fullerene derivatives to create highly air-stable BHJ solar cells. It is well-known that controlling the morphology in the photoactive layer, which is constructed with fullerene derivatives as the electron acceptor, is important for obtaining a high overall efficiency through the solvent method. The conventional solvent method is useful for high-solubility materials, such as fullerene derivatives. However, for Ti-alkoxides, the conventional solvent method is insufficient, because they only dissolve in specific solvents. Here, we demonstrate a new approach to morphology control that uses the molecular bulkiness of Ti-alkoxides without the conventional solvent method. That is, this method is one approach to obtain highly efficient, air-stable, organic-inorganic bulk-heterojunction solar cells.

Introduction

有机光电器件被认为是有前途的可再生能源,由于其制造成本低,重量轻1-7。因为这些优点,有大量的科学家一直沉浸在此希望的领域。在过去十年中,染料敏化型,有机薄膜,和钙钛矿敏化太阳能电池已在这方面取得了8中的功率转换效率显著进展。

具体而言,有机薄膜太阳能电池和BHJ有机薄膜太阳能电池技术是用于太阳能的利用效率和成本效益的解决方案。另外,能量转换效率达到10%以上与使用低带隙聚合物作为电子给体和富勒烯衍生物作为电子受体(苯基-C 61 -丁-酸甲基酯:[60] PCBM或苯基-C 71 -丁酸甲酯:[70] PCBM)9-11。此外,一些研究人员ħAVE已经报道,在光活性层,其具有低带隙的聚合物和富勒烯衍生物的构造获得高总体效率的BHJ结构的重要性。然而,富勒烯衍生物是空气敏感。因此,空气稳定的电子接受材料是必需的作为替代。一些报道曾建议新类型使用n型半导体聚合物或金属氧化物作为电子受体的有机光伏电池。这些报告的支持空气稳定,自由富勒烯,有机薄膜太阳能电池12-15的发展。

然而,与此相反富勒烯系统或n型高分子半导体的系统,从而获得的BHJ结构的光活性层,其具有电荷分离和电荷传输能力的一个令人满意的性能,是在金属氧化物系统16-17困难。此外,富勒烯衍生物和n型半导体聚合物具有高的溶解度在许多溶剂。因此,很容易通过选择油墨溶液作为溶剂,它是光活性层18-20的前体,以控制所述光活性层的形态。与此相反,在与供电子聚合物组合使用金属醇盐体系的情况下,两个半导体是在几乎所有的溶剂不溶。这是因为金属醇盐不具有在溶剂中的高溶解度。因此,溶剂的形态控制的选择性非常低。

在这篇文章中,我们报道了利用分子蓬松制作打印和高空气稳定BHJ太阳能电池控制光活性层的形态的方法。我们描述了自由富勒烯BHJ太阳能电池的进展形态学控制的重要性。

Protocol

1.铟锡氧化物(ITO)玻璃的制备太阳能电池制造切ITO /玻璃基板。 使用玻璃切割器,切割的ITO /玻璃基底(10厘米×10厘米)成片测量约2厘米* 2厘米。 化学蚀刻的ITO导电层。 使用数字万用表,检查ITO /玻璃片的顶部具有导电性的一面。 放置在ITO /玻璃片的两面胶带,留下2毫米×2厘米的中间的中心区域。用遮蔽胶带,防止腐蚀ITO导电层的其余部分。 倒?…

Representative Results

我们已经提出了一个协议,用于制造完全可打印的有机 – 无机BHJ太阳能电池,以及用于控制相分离结构的方法。太阳能电池性能已经广泛研究27-31在Ti(IV)的异丙醇和乙醇被用作电子接受材料( 图1)。这些太阳能电池显示出的短路电流密度(Jsc),该比使用“的Ti(IV)的丁醇聚合物”( 表1)的设备的较高的大约8倍。在光活性层中的所?…

Discussion

为了利用该分子在这一方法膨松,重要的是要知道用于通过旋涂成膜的条件。首先,在p型和n型半导体必须能溶解在溶剂中。当一些物质仍然存在,这将成为光活性层大核心域。建议使用个别的溶剂的适当的商业过滤以除去剩余的材料。接着,在其中分子溶解该前体溶液必须被均匀地和均质打印为在大约60秒在ITO /玻璃基板上的光敏层。这个过程是用以下三个步骤执行。首先,将前体溶液和ITO /玻?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作是部分由日本学术振兴会KAKENHI批准号25871029中,日本板硝子基金会材料科学与工程,以及枥木产业促进中心的支持。国家技术研究所,大山书院,还协助这篇文章的出版费用。

Materials

Ti(IV) isopropoxide, 97% Sigma Aldrich 205273
Ti(IV) ethoxide Sigma Aldrich 244759 Technical grade
Ti(IV) butoxide, 97% Sigma Aldrich 244112 Reagent grade
Ti(IV) butoxide polymer Sigma Aldrich 510718
Poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) Sigma Aldrich 754013
[6,6]-phenyl-C61 butyric acid methyl ester ([60]PCBM) 99.5% Sigma Aldrich 684449 Research grade
poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) Heraeus Clevios S V3
1N Hydrochloric acid Wako 083-01095
Chlorobenzene 99.0% Wako 032-07986
Acetone 99.5% Wako 016-00346
Indium-tin oxide (ITO)-coated glass substrate Geomatec 0002 100×100×1.1t (mm)
Glass substrate Matsunami Glass S7213 76×26×1.2t (mm)
Cotton tail  As one 1-8584-16
Epoxy resin Nichiban AR-R30
Plastic spatula As one 2-3956-02
Ultrasonic cleaner As one AS482
Magnetic hot  stirrer As one RHS-1DN
Ceramic hotplate As one CHP-17DN
Spin coater Kyowariken K-359 S1
Vacuum pump ULVAC DA-30S
UV-O3 cleaner Filgen UV253E
Screen printer Mitani Electronics MEC-2400
Ultrasonic Soldering system Kuroda Techno SUNBONDER USM-5
Direct-current voltage and current source/monitor integrated system San-Ei Electric XES-40S1
Scanning electron microscope JEOL Ltd. JSM-7800

References

  1. Price, C. S., Stuart, C. A., Yang, L., Zhou, H., You, W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J. Am. Chem. Soc. 133 (12), 4625-4631 (2011).
  2. Liang, Y. Y., et al. For the bright future-Bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, 135-138 (2010).
  3. Chu, T. -. Y., et al. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2′,3′-d]silole copolymer with a power conversion efficiency of 7.3%. J. Am. Chem. Soc. 133 (12), 4250-4253 (2011).
  4. Zhou, H., et al. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. Int. Ed. 50 (13), 2995-2998 (2011).
  5. Janssen, J. A. R., Nelson, J. Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 25 (13), 1847-1858 (2012).
  6. Nelson, J. Polymer:fullerene bulk heterojunction solar cells. Mater. Today. 14 (10), 462-470 (2011).
  7. He, Z., Zhong, C., Su, S., Xu, M., Wu, H., Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics. 6, 591-595 (2012).
  8. Baena, J. P. C., et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928-2934 (2015).
  9. Shuttle, G. C., Hamilton, R., O’Regan, B. C., Nelson, J., Durrant, R. J. Charge-density-based analysis of the current-voltage response of polythiophene/fullerene photovoltaic devices. Proc. Natl. Acad. Sci. U.S.A. 107, 16448-16452 (2010).
  10. Dibb, G. F. A., Kirchartz, T., Credgington, D., Durrant, R. J., Nelson, J. Analysis of the relationship between linearity of corrected photocurrent and the order of recombination in organic solar cells. J. Phys. Chem. Lett. 2 (19), 2407-2411 (2011).
  11. Maurano, A., et al. Transient optoelectronic analysis of charge carrier losses in a selenophene:fullerene blend solar cell. J. Phys. Chem. C. 115, 5947-5957 (2011).
  12. Yuan, Y., Michinobu, T., Oguma, J., Kato, T., Miyake, K. Attempted inversion of semiconducting features of platinum polyyne polymers: A new approach for all-polymer solar cells. Macromol. Chem. Phys. 214 (13), 1465-1472 (2013).
  13. Granström, M., et al. Laminated fabrication of polymeric photovoltaic diodes. Nature. 395, 257-260 (1998).
  14. Hal, A. P., et al. Photoinduced electron transfer and photovoltaic response of a MDMO-PPV:TiO2 bulk-heterojunction. Adv. Mater. 15 (2), 118-121 (2003).
  15. Das, K. S., et al. Controlling the processable ZnO and polythiophene interface for dye-densitized thin film organic solar cells. Thin Solid Films. , 302-307 (2013).
  16. Campoy-Quiles, M., et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nature Materials. 7, 158-164 (2008).
  17. Schmidt-Hansberg, B., et al. Moving through the phase diagram: morphology formation in solution cast polymer-fullerene blend films for organic solar cells. ACS Nano. 5 (11), 8579-8590 (2011).
  18. Hou, Q., et al. Novel red-emitting fluorene-based copolymers. J. Mater. Chem. 12, 2887-2892 (2002).
  19. Zheng, L., et al. Synthesis of C60 derivatives for polymer photovoltaic cell. Synth. Met. 135, 827-828 (2003).
  20. Svensson, M., et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv. Mater. 15 (12), 988-991 (2003).
  21. Kato, T., et al. Morphology control for highly efficient organic-inorganic bulk heterojunction solar cell based on Ti-alkoxide. Thin Solid Films. 600, 98-102 (2016).
  22. Shibata, Y., et al. Quasi-solid dye sensitized solar cells with ionic liquid Increase in efficiencies by specific interaction between conductive polymers and gelators. Chem. Comm. 21, 2730-2731 (2003).
  23. Wu, J., et al. A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv. Funct. Mater. 17 (15), 2645-2652 (2007).
  24. Johansson, J. M. E., et al. Photovoltaic and interfacial properties of heterojunctions containing dye sensitized dense TiO2 and Tri-arylamine derivatives. Chem. Mater. 19 (8), 2017-2078 (2007).
  25. Echlin, P. . Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis. , (2011).
  26. Flegler, S. L., Heckman, J. W., Klomparens, K. L. . Scanning and Transmission Electron Microscopy: An Introduction. , (1993).
  27. Cowan, R. S., Roy, A., Heeger, J. A. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B. 82 (24), 245207 (2010).
  28. Street, A. R., Cowan, S., Heeger, J. A. Experimental test for geminate recombination applied to organic solar cells. Phys. Rev. B. 82 (12), 121301 (2010).
  29. Shuttle, G. C., et al. Charge extraction analysis of charge carrier densities in a polythiophene/fullerene solar cell: Analysis of the origin of the device dark current. Appl. Phys. Lett. 93, 183501 (2008).
  30. Shuttle, G. C., et al. Bimolecular recombination losses in polythiophene: Fullerene solar cells. Phys. Rev. B. 78, 113201 (2008).
  31. Reyes-Reyes, M., et al. Methanofullerene elongated nanostructure formation for enhanced organic solar-cells. Thin Solid Films. 516 (1), 52-57 (2007).
  32. Shuttle, G. C., et al. Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell. Appl. Phys. Lett. 92, 093311 (2008).
  33. Mori, D., Benten, H., Ohkita, H., Ito, S., Miyake, K. Polymer/polymer blend solar cells improved by using high-molecular-weight fluorene-based copolymer as electron acceptor. ACS Appl. Mater. Interfaces. 4 (7), 3325-3329 (2012).
  34. You, J., et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Commun. 4, 1446 (2013).
check_url/fr/54923?article_type=t

Play Video

Citer Cet Article
Kato, T., Oinuma, C., Otsuka, M., Hagiwara, N. Morphology Control for Fully Printable Organic–Inorganic Bulk-heterojunction Solar Cells Based on a Ti-alkoxide and Semiconducting Polymer. J. Vis. Exp. (119), e54923, doi:10.3791/54923 (2017).

View Video