Summary

Indsigt i samspillet mellem aminosyrer og peptider med uorganiske materialer Brug Single-Molecule force spektroskopi

Published: March 06, 2017
doi:

Summary

Her præsenterer vi en protokol til at måle kraft af samspillet mellem en veldefineret uorganisk overflade og enten peptider eller aminosyrer ved en enkelt-molekyle force spektroskopi målinger ved hjælp af en atomic force mikroskop (AFM). Opnået fra måleinformationen er vigtigt for bedre at forstå peptid-uorganiske materiale interfase.

Abstract

Samspillet mellem proteiner eller peptider og uorganiske materialer føre til flere interessante processer. For eksempel kombinerer proteiner med mineraler fører til dannelse af kompositmaterialer med unikke egenskaber. Desuden er den uønskede proces med biologisk begroning initieret ved adsorption af biomolekyler, især proteiner, på overflader. Denne organiske lag er et klæbelag for bakterier og giver dem mulighed for at interagere med overfladen. Forståelse af de fundamentale kræfter, der styrer samspillet på organiske-uorganiske interface er derfor vigtigt for mange områder af forskning og kan føre til design af nye materialer til optiske, mekaniske og biomedicinske anvendelser. Dette demonstrerer et enkeltstrenget molekyle force spektroskopi teknik, der anvender en AFM at måle adhæsionskraft mellem enten peptider eller aminosyrer og veldefinerede uorganiske overflader. Denne teknik indebærer en protokol til fastgørelse biomolekylet til AFMtip gennem en kovalent fleksibel linker og enkelt-molekyle force spektroskopi målinger ved atomic force mikroskop. Desuden er en analyse af disse målinger medfølger.

Introduction

Samspillet mellem proteiner og uorganiske mineraler fører til konstruktionen af ​​kompositmaterialer med særlige egenskaber. Dette inkluderer materialer med høj mekanisk styrke eller unikke optiske egenskaber. 1, 2 Fx kombinationen af proteinet kollagen med mineralet hydroxyapatit genererer enten bløde eller hårde knogler for forskellige funktionaliteter. 3 Korte peptider kan også binde uorganiske materialer med høj specificitet. 4, har 5, 6 Specificiteten af disse peptider blevet anvendt til at designe nye magnetiske og elektroniske materialer, 7, 8, 9 fabrikere nanostrukturerede materialer, voksende krystaller, 10 og syntetisere nanopartikler. 11 Forståelse af mekanismen bag interaktioner mellem peptider eller proteiner og uorganiske materialer vil derfor tillade os at designe nye kompositmaterialer med forbedrede adsorberende egenskaber. Eftersom interfasen af ​​implantater med et immunrespons medieres af proteiner, bedre forståelse af interaktioner af proteiner med uorganiske materialer vil forbedre vores evne til at designe implantater. Et andet vigtigt område, der involverer proteiner interagerer med uorganiske overflader er fremstillingen af ​​antifouling materialer. 12, 13, 14, 15 Biofouling er en uønsket proces, hvor organismer tillægger en overflade. Det har mange skadelige konsekvenser for vores liv. For eksempel, begroning af bakterier på medicinsk udstyr fører til hospitalserhvervede infektioner. Begroning af marine organismer på både og større skibe øger forbrug af brændstof. 12, 16, 17, 18

Single-molekyle force spektroskopi (Standard MIDI), ved anvendelse af en AFM, kan direkte måle vekselvirkningerne mellem en aminosyre eller et peptid med et substrat. 19, 20, 21, 22, 23, 24, 25, 26 Andre fremgangsmåder såsom fagdisplay, 27, 28 kvartskrystalmikrovægt (QCM) 29 eller overfladeplasmonresonans (SPR) 29, 30, 31, 32,ref "> 33 foranstaltning samspillet mellem peptider og proteiner til uorganiske overflader i løs vægt. 34, 35, 36 Det betyder, at der opnås ved disse metoder resultater vedrører samlinger af molekyler eller aggregater. I Standard MIDI, er en eller meget få molekyler fastgjort til AFM spids og deres samspil med det ønskede substrat måles. Denne fremgangsmåde kan udvides til at studere proteinfoldning ved at trække proteinet fra overfladen. Desuden kan den anvendes til at måle interaktioner mellem celler og proteiner, og bindingen af ​​antistoffer til deres ligander. 37, 38, 39, 40 Dette papir beskriver i detaljer, hvordan man vedhæfte enten peptider eller aminosyrer til AFM spids hjælp silanol kemi. Desuden papiret forklarer, hvordan man udfører kraftmålinger, og hvordan man analysereresultater.

Protocol

1. Tip Ændring Køb siliciumnitrid (Si 3 N 4) AFM cantilevere med silicium tips (nominel cantilever radius af ~ 2 nm). Rengør hver AFM cantilever ved at dyppe i vandfri ethanol i 20 min. Tørt ved stuetemperatur. Derefter behandle cantilevere ved at udsætte dem for O 2 plasma i 5 min. Suspendere de rene tips ovenfor (3 cm) en opløsning indeholdende methyltriethoxysilan og 3- (aminopropyl) triethoxysilan i et forhold på 15: 1 (v / v) i en ekssikkator un…

Representative Results

Figur 1 udviser tip modifikation procedure. I det første trin, en plasmabehandling ændrer overfladen af ​​siliciumnitrid spids. Spidsen præsenterer OH-grupper. Disse grupper vil derefter reagere med silanerne. Ved afslutningen af dette trin, vil overfladen af spidsen være dækket af frie -NH2-grupper. Disse frie aminer vil derefter reagere med Fmoc -PEG-NHS, en kovalent linker. Fmoc-gruppen af ​​PEG-linker fjernes ved pipyridine, et afbeskyttelsesr…

Discussion

Steps 1.3, 1.4 and 1.7 in the protocol should be carried out with extensive care and in a very gentle manner. In step 1.3, the tip should not be in contact with the silane mixture and the silanization process should be carried out in an inert atmosphere (moisture free).45 This is done in order to prevent multilayer formation and because silane molecules readily undergo hydrolysis in the presence of moisture.45

In step 1.4, the temperature and tim…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Marie Curie International Reintegration Grant (EP7). P. D. acknowledges the support of the Israel Council for Higher Education.

Materials

Silicon nitride (Si3N4) AFM cantilevers with silicon tips Bruker (Camarilo, CA, USA) MSNL10, nominal cantilevers radius ~2 nm 
Methyltriethoxysilane  Acros Organics (New Jersey, USA) For Silaylation of the AFM tip 
3-(Aminopropyl) triethoxysilane Sigma-Aldrich (Jerusalem, Israel) Used for tip modification 
Triisopropylsilane Sigma-Aldrich (Jerusalem, Israel) Used for tip modification
N-Ethyldiisopropylamine Alfa-Aesar (Lancashire, UK) Used for tip modification
Triethylamine Alfa-Aesar (Lancashire, UK) Used for tip modification
Piperidine Alfa-Aesar (Lancashire, UK) Used for tip modification
Fluorenylmethyloxycarbonyl-PEG-N-hydroxysuccinimide  (Fmoc-PEG-NHS) Iris Biotech GmbH (Deutschland, Germany) Used as the covalent flexible linker  (MW = 5000 Da)
2-(1H-benzotriazol-1-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate (HBTU) Alfa Aser (Heysham, England) Used as a coupling reagent. 
N-methyl-2-pyrrolidone (NMP) Acros Organics (New Jersey, USA) Used as Solvent in Tip modification procedure
DMF (dimethylformamide) Merck (Darmstadt, Germany) Used as Solvent in Tip modification procedure
Trifluoro acetic acid (TFA) Merck (Darmstadt, Germany)
Acetic anhydride Merck (Darmstadt, Germany)
Peptides GL Biochem (Shanghai, China).
Phenylalanine and Tyrosine  Biochem (Darmstadt, Germany) 
30% TiO2 dispersion in the mixture of solvent 2-(2-Methoxyethoxy) ethanol (DEGME) and Ethyl 3-Ethoxypropionate (EEP) Applied Vision Laboratories (Jerusalem, Israel) (30%) in the mixture of solvent 2-(2 Methoxyethoxy) ethanol (DEGME) and Ethyl 3-Ethoxypropionate (EEP)
Mica substrates TED PELLA, INC. (Redding, California, USA) 9.9 mm diameter

References

  1. Addadi, L., Weiner, S. Control and design principles in biological mineralization. Angew. Chem., Int. Ed. 31 (2), 153-169 (1992).
  2. Meyers, M. A., Chen, P. Y., Lin, A. Y. M., Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53 (1), 1-206 (2008).
  3. Villee, C. A. J. Book Review. Engl. J. Med. 309 (4), 247-248 (1983).
  4. Vallee, A., Humblot, V., Pradier, C. -. M. Peptide interactions with metal and oxide surfaces. Acc. Chem. Res. 43 (10), 1297-1306 (2010).
  5. Peelle, B. R., Krauland, E. M., Wittrup, K. D., Belcher, A. M. Design criteria for engineering inorganic material-specific peptides. Langmuir. 21 (15), 6929-6933 (2005).
  6. Gabryelczyk, B., Szilvay, G. R., Linder, M. B. The structural basis for function in diamond-like carbon binding peptides. Langmuir. 30 (29), 8798-8802 (2014).
  7. Sarikaya, M., Tamerler, C., Jen, A. K. Y., Schulten, K., Baneyx, F. Molecular biomimetics: Nanotechnology through biology. Nat. Mater. 2 (9), 577-585 (2003).
  8. Tamerler, C., Sarikaya, M. Molecular biomimetics: Utilizing nature’s molecular ways in practical engineering. Acta Biomater. 3 (3), 289-299 (2007).
  9. Seker, U. O. S., Demir, H. V. Material binding peptides for nanotechnology. Molecules. 16 (2), 1426-1451 (2011).
  10. Green, J. J., et al. Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells. Nano Lett. 7 (4), 874-879 (2007).
  11. Grohe, B., et al. Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. J. Am. Chem. Soc. 129 (48), 14946-14951 (2007).
  12. Maity, S., Nir, S., Zada, T., Reches, M. Self-assembly of a tripeptide into a functional coating that resists fouling. Chem. Commun. 50 (76), 11154-11157 (2014).
  13. Das, P., Yuran, S., Yan, J., Lee, P. S., Reches, M. Sticky tubes and magnetic hydrogels co-assembled by a short peptide and melanin-like nanoparticles. Chem. Commun. 51 (25), 5432-5435 (2015).
  14. Burg, K. J. L., Porter, S., Kellam, J. F. Biomaterial developments for bone tissue engineering. Biomaterials. 21 (23), 2347-2359 (2000).
  15. Weiger, M. C., et al. Quantification of the binding affinity of a specific hydroxyapatite binding peptide. Biomaterials. 31 (11), 2955-2963 (2010).
  16. Pettitt, M. E., Henry, S. L., Callow, M. E., Callow, J. A., Clare, A. S. Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta. Biofouling. 20 (6), 299-311 (2004).
  17. Schultz, M. P., Finlay, J. A., Callow, M. E., Callow, J. A. Three models to relate detachment of low form fouling at laboratory and ship scale. Biofouling. 19, 17-26 (2003).
  18. Cao, S., Wang, J., Chen, H., Chen, D. Progress of marine biofouling and antifouling technologies. Chinese Science Bulletin. 56 (7), 598-612 (2010).
  19. Wei, Y., Latour, R. A. Correlation between desorption force measured by Atomic Force Microscopy and adsorption free energy measured by surface plasmon resonance spectroscopy for peptide-surface interactions. Langmuir. 26 (24), 18852-18861 (2010).
  20. Li, Q., et al. AFM-based force spectroscopy for bioimaging and biosensing. RSC Advances. 6, 12893-12912 (2016).
  21. Meibner, R. H., Wei, G., Ciacchi, L. C. Estimation of the free energy of adsorption of a polypeptide on amorphous SiO2 from molecular dynamics simulations and force spectroscopy experiments. Soft Matter. 11 (31), 6254-6265 (2015).
  22. Xue, Y., Li, X., Li, H., Zhang, W. Quantifying thiol-gold interactions towards the efficient strength control. Nat. Commun. 5, 4348 (2014).
  23. Razvag, Y., Gutkin, V., Reches, M. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy. Langmuir. 29, 10102-10109 (2013).
  24. Das, P., Reches, M. Revealing the role of catechol moieties in the interactions between peptides and inorganic surfaces. Nanoscale. 8, 15309-15316 (2016).
  25. Das, P., Reches, M. Review insights into the interactions of amino acids and peptides with inorganic materials using single molecule force spectroscopy. Bioploymers-Pept. Sci. 104, 480-494 (2015).
  26. Maity, S., et al. Elucidating the mechanism of interaction between peptides and inorganic surfaces. Phys. Chem. Chem. Phys. 17 (23), 15305-15315 (2015).
  27. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F., Belcher, A. M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature. 405 (6787), 665-668 (2000).
  28. Tamerler, C., Oren, E. E., Duman, M., Venkatasubramanian, E., Sarikaya, M. Adsorption Kinetics of an engineered gold binding peptide by surface plasmon resonance spectroscopy and a quartz crystal microbalance. Langmuir. 22 (18), 7712-7718 (2006).
  29. Santos, O., Kosoric, J., Hector, M. P., Anderson, P., Lindh, L. Adsorption behavior of statherin and a statherin peptide onto hydroxyapatite and silica surfaces by in situ ellipsometry. J. Colloid Interface Sci. 318 (2), 175-182 (2008).
  30. Evans, E., Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72 (4), 1541-1555 (1997).
  31. Micksch, T., Liebelt, N., Scharnweber, D., Schwenzer, B. Investigation of the peptide adsorption on ZrO2, TiZr, and TiO2 surfaces as a method for surface modification. ACS Appl. Mater. Interfaces. 6 (10), 7408-7416 (2014).
  32. Patwardhan, S. V., et al. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. J. Am. Chem. Soc. 134 (14), 6244-6256 (2012).
  33. Thyparambil, A. A., Wei, Y., Latour, R. A. Determination of peptide-surface adsorption free energy for material surfaces not conducive to SPR or QCM using AFM. Langmuir. 28 (13), 5687-5694 (2012).
  34. Hnilova, M., et al. Effect of molecular conformations on the adsorption behavior of gold-binding peptides. Langmuir. 24 (21), 12440-12445 (2008).
  35. Sano, K., Sasaki, H., Shiba, K. Utilization of the pleiotropy of a peptidic aptamer to fabricate heterogeneous nanodot-containing multilayer nanostructures. J. Am. Chem. Soc. 128 (5), 1717-1722 (2006).
  36. Chen, H., Su, X., Neoh, K. -. G., Choe, W. -. S. Context-dependent adsorption behavior of cyclic and linear peptides on metal oxide surfaces. Langmuir. 25 (3), 1588-1593 (2008).
  37. Zlatanova, J., Lindsay, S. M., Leuba, S. H. Single molecule force spectroscopy in biology using the atomic force microscope. Prog. Biophys. Mol. Biol. 74 (1-2), 37-61 (2000).
  38. Wang, C. Z., Yadavalli, V. K. Investigating biomolecular recognition at the cell surface using atomic force microscopy. Micron. 60, 5-17 (2014).
  39. Galler, K., Brautigam, K., Grobe, C., Popp, J., Neugebauer, U. Making a big thing of a small cell – recent advances in single cell analysis. Analyst. 139 (6), 1237-1273 (2014).
  40. Carvalho, F. A., Martins, I. C., Santos, N. C. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality. Arch. Biochem. Biophys. 531 (1-2), 116-127 (2013).
  41. Azoubel, S., Magdassi, S. Controlling adhesion properties of SWCNT-PET films prepared by wet deposition. ACS Appl. Mater. Interfaces. 6 (12), 9265-9271 (2014).
  42. Jaschke, M., Butt, H. J. Height calibration of optical-lever atomic-force microscopes by simple laser interferometry. Rev. Sci. Instrum. 66 (2), 1258-1259 (1995).
  43. Evans, E., Kinoshita, K., Simon, S., Leung, A. Long-lived, high-strength states of ICAM-1 bonds to beta(2) integrin, I: Lifetimes of bonds to recombinant alpha(L) beta(2) under force. Biophys. J. 98 (8), 1458-1466 (2010).
  44. Bouchiat, C., et al. Estimating the persistence length of a Worm-Like Chain molecule from force-extension measurements. Biophys. J. 76 (1), 409-413 (1999).
  45. Pick, C., Argento, C., Drazer, G., Frechette, J. Micropatterned Charge Heterogeneities via Vapor Deposition of Aminosilanes. Langmuir. 31 (39), 10725-10733 (2015).
  46. Berquand, A., et al. Antigen binding forces of single antilysozyme Fv fragments explored by atomic force microscopy. Langmuir. 21, 5517-5523 (2005).
  47. Kienberger, F., et al. Recognition Force Spectroscopy Studies of the NTA-His6 Bond. Single Molecules. 1, 59-65 (2000).
  48. Tong, Z., Mikheikin, A., Krasnoslobodtsev, A., Lv, Z., Lyubchenko, Y. L. Novel polymer linkers for single molecule AFM force spectroscopy. Methods. 60, 161-168 (2013).
  49. Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 96, 1533-1554 (1996).
  50. Andolfi, L., Bizzarri, A. R., Cannistraro, S. Electron tunneling in a metal-protein-metal junction investigated by scanning tunneling and conductive atomic force spectroscopies. Appl. Phys. Lett. 89, 183125 (2006).

Play Video

Citer Cet Article
Das, P., Duanias-Assaf, T., Reches, M. Insights into the Interactions of Amino Acids and Peptides with Inorganic Materials Using Single-Molecule Force Spectroscopy. J. Vis. Exp. (121), e54975, doi:10.3791/54975 (2017).

View Video