Summary

Studiare mitocondriale Struttura e funzione in<em> Drosophila</em> ovaie

Published: January 04, 2017
doi:

Summary

Analysis of the mitochondrial structure-function relationship is required for a thorough understanding of the regulatory mechanisms of mitochondrial functionality. Specific methods for studying mitochondrial structure and function in live and fixed Drosophila ovaries are described and demonstrated in this paper.

Abstract

Analysis of the mitochondrial structure-function relationship is required for a thorough understanding of the regulatory mechanisms of mitochondrial functionality. Fluorescence microscopy is an indispensable tool for the direct assessment of mitochondrial structure and function in live cells and for studying the mitochondrial structure-function relationship, which is primarily modulated by the molecules governing fission and fusion events between mitochondria. This paper describes and demonstrates specific methods for studying mitochondrial structure and function in live as well as in fixed tissue in the model organism Drosophila melanogaster. The tissue of choice here is the Drosophila ovary, which can be isolated and made amenable for ex vivo live confocal microscopy. Furthermore, the paper describes how to genetically manipulate the mitochondrial fission protein, Drp1, in Drosophila ovaries to study the involvement of Drp1-driven mitochondrial fission in modulating the mitochondrial structure-function relationship. The broad use of such methods is demonstrated in already-published as well as in novel data. The described methods can be further extended towards understanding the direct impact of nutrients and/or growth factors on the mitochondrial properties ex vivo. Given that mitochondrial dysregulation underlies the etiology of various diseases, the described innovative methods developed in a genetically tractable model organism, Drosophila, are anticipated to contribute significantly to the understanding of the mechanistic details of the mitochondrial structure-function relationship and to the development of mitochondria-directed therapeutic strategies.

Introduction

I mitocondri sono classicamente descritti come la centrale elettrica cellulare, dal momento che sono le principali sedi di produzione di energia nelle cellule differenziate. Inoltre, i mitocondri hanno un ruolo fondamentale nel metabolismo, la generazione di calore, la modifica dei lipidi, calcio e redox omeostasi, l'orchestrazione dei processi di segnalazione cellulare, ecc 1. I mitocondri anche svolgere un ruolo attivo nella induzione della morte cellulare 2, nonché nella regolazione del ciclo cellulare 3. Tale multifunzionalità pone le seguenti domande fondamentali: a) come fanno i mitocondri svolgono tutte queste funzioni contemporaneamente e b) ci sono piscine mitocondriali specifici o sottozone che sono specializzati per funzioni distinte? In questo contesto, è importante notare che i mitocondri multifunzionali sono dinamici nella forma, dimensioni, e la struttura all'interno delle singole cellule e che la forma a regime di mitocondri possono variare tra i tipi di cellule. Decenni di ricerca provenienti da varie laboratoriooratori suggeriscono che l'alterazione della forma mitocondriale, le dimensioni e la struttura, chiamati collettivamente dinamiche mitocondriali, è fondamentale per mantenere le varie funzioni mitocondriali 4,5,6. Questi risultati sollevano la possibilità che i mitocondri possano compiere la loro multifunzionalità in virtù della loro dinamismo strutturale.

Ampi sforzi sono in corso per capire il rapporto struttura-funzione mitocondriale. La dinamicità della struttura mitocondriale viene mantenuta principalmente dalla loro capacità di subire eventi di fissione e fusione con l'altro. Fissione di grandi mitocondri li converte in elementi mitocondriali più piccoli, mentre la fusione tra due mitocondri piccoli li fonde in un elemento mitocondriale grande 7. Inoltre, può verificarsi la fusione transitorio di due mitocondri per consentire la miscelazione del loro contenuto. La fissione e fusione eventi delle membrane mitocondriali interne ed esterne sono attentamente regolate da specificheific imposta di proteine. Il macchinario nucleo fissione è composto dynamin-related protein 1 (DRP1), che viene assunto dal citosol ai mitocondri dalla sua interazione con certa bona proteine mitocondriali fide (ad esempio, Fis1 o Mff1), mentre la funzione DRP1 può anche essere regolata altre proteine sulla superficie mitocondriale 4. Anche se DRP1 opera sulla membrana esterna, la sua capacità di fissione impatto la membrana interna pure. L'orchestrazione della fissione delle membrane mitocondriali esterne ed interne non è ben compreso. D'altra parte, la fusione della membrana interna è regolata al centro dalle attività di OPA1, mentre mitofusins regolano la fusione della membrana esterna 5. Il saldo dei fissione e fusione di contrasto eventi di mitocondri dettare la forma mitocondriale stato stazionario in una cella. Ad esempio, la repressione di fissione mitocondriale comporterebbe fusione completa e senza opposizione, mentre l'eccessiva attività dei mitocondril fissione comporterebbe la frammentazione dei mitocondri 3.

Lo studio della relazione struttura-funzione mitocondriale coinvolge principalmente due approcci complementari: a) analisi dei fenotipi cellulari e organismal dopo la manipolazione genetica delle proteine ​​fissione / fusione mitocondriali e b) le valutazioni diretti di struttura e funzione mitocondriale. È interessante notare che le analisi genetiche non sempre rivelare la funzionalità diretta della molecola in questione (in questo caso, mitocondriale proteine ​​fissione / fusione), come i fenotipi possono sorgere a causa di effetti secondari. Pertanto, è di fondamentale importanza per sviluppare e utilizzare strumenti per studiare la struttura e la funzione mitocondriale direttamente. Qualsiasi valutazione della struttura dei mitocondri coinvolge vari strumenti di microscopia. L'uso della microscopia a fluorescenza delle cellule vive è notevolmente avanzato gli studi di dinamiche mitocondriali, dal momento che il dinamismo mitocondriale può essere controllato sia qualitativamente che Quantitätvamente utilizzando gli strumenti e le tecniche di microscopia a fluorescenza 8 appropriate. Strumenti microscopia a base di fluorescenza sono stati sviluppati per studiare la struttura e la funzione mitocondriale in tessuti Drosophila melanogaster vivi e fisse, chiarire il significato di dinamismo mitocondriale in vivo 9. Questi e metodi relativi sono descritti qui, con l'obiettivo di studiare la struttura e la funzione mitocondriale nelle ovaie Drosophila.

L'ovaio Drosophila è composto da germinali e somatiche lignaggi, che derivano dalle rispettive cellule staminali adulte che si trovano nel germarium 10,11. Sedici cellule germinali sinciziale (GCS) vengono incapsulati dalle cellule follicolari somatiche (FC) per formare singole camere d'uovo che emergono dalla germarium (Figura 1). Uno dei 16 CV ottenere impegna a diventare un ovocita, e il restante 15 CV svilupparsi in cellule infermiere che supportano la crescita della camera di ovociti, Facilitando la maturazione dell'uovo prima che venga deposto. La maggior parte degli FC subiscono 9 turni di divisioni mitotiche, prima di uscire dal ciclo cellulare mitotico a differenziarsi terminale in uno strato di cellule epiteliali modellato costituito da cellule anteriore follicolo (AFCS), cellule posteriore follicolo (PFC), e principali cellule del corpo (MBC) . Le camere di uova consecutivi sono collegati da cellule gambo, che si differenziano le cellule che sono anche derivati ​​da FC nelle prime fasi di sviluppo. Forma mitocondriale regolato dalla proteina DRP1 fissione mitocondriale è attivamente coinvolto nel processo di differenziazione durante il normale sviluppo del ovarico strato di FC Drosophila 9,12. I metodi utilizzati in questi studi per identificare il coinvolgimento di DRP1 in Drosophila sviluppo strato di cellule del follicolo sono descritte qui.

Protocol

1. Preparazione di Drosophila (gli strumenti necessari sono descritte nella Figura 2A) Per qualsiasi degli esperimenti descritti, raccogliere Drosophila (mantenuta a temperatura ambiente, o 25 ° C) entro 5 giorni di eclosion e metterli in una fiala riempita di 5-7 ml di Drosophila cibo (vedi Materiali Tavolo), con non più di 25 mosche in ogni fiala; mantenere un rapporto femmine: maschi di 2: 1. Cospargere una piccola quantità di lievito granulato per s…

Representative Results

I metodi descritti possono essere utilizzati per studiare la struttura e la funzione mitocondriale in ovaie Drosophila vivi e fissi (Figura 2B). A condizione sono alcuni esempi di risultati attesi ottenuti con i metodi descritti. La dissezione delle ovaie Drosophila: Quando sezionato ulteriormente, gli addomi mozzate (Figura 3B) da tutta la Drosophila …

Discussion

I passaggi critici all'interno del protocollo

Photobleaching: Prevenire indebite photobleaching dei campioni fluorescenti è assolutamente necessario per l'esecuzione efficiente microscopia confocale. Pertanto, il tempo utilizzato per individuare i campioni attraverso l'oculare o per impostare i parametri di acquisizione di immagini attraverso la modalità di scansione dal vivo deve essere ridotto al minimo per ridurre al minimo photobleaching.

<p class="jove…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We acknowledge Leena Patel and Diamond Woodard for helping in the Drosophila medium preparation and Dr. Igor Chesnokov for providing access to the camera-attached stereomicroscope.

Materials

Grace's Media (Insect Dissecting Medium) Fisher Scientific 30611031-2
41 Paraformaldehyde AQ Electronic Microscopy Sciences 50-259-99
Mitotracker Green (overall mitochondrial stain) Life Technologies m7514 Reconstitute and Aliquot
Tetramethylrhodamine ethyl ester perchlorate Sigma Aldrich 87917-25MG Reconstitute and Aliquot
MitoSox (Mito-Ros stain) Life Technologies m36008 Reconstitute and Aliquot
PolyLysine MP Biomedicals ICN15017625
Fly Vials Fisher Scientific AS-515
Fly Conicals Fisher Scientific AS-355
Fly Vial Flugs Fisher Scientific AS273
Fly Conical Flugs Fisher Scientific AS 277
Jazzmix Drosophila food (Drosophila food) Fisher Scientific AS153
Bovine Serum Albumin Sigma Aldrich A9647-50G
Cyclin E Antibody (d-300) Santa Cruz sc- 33748
ATPB antibody [3D5] – Mitochondrial Marker AbCam ab14730
Cy3 AffiniPure Goat Anti-Mouse IgG (H+L) Jackson ImmunoResearch 115-165-146
Cy5 AffiniPure Goat Anti-Rabbit IgG (H+L) Jackson ImmunoResearch 111-175-144
Hoechst Fisher Scientific H3570
VectaShield Fisher Scientific H100
Azer Scientific EverMark Select Microscope Slides Fisher Scientific 22-026-252
Microscope Cover Glass Fisher Scientific 12-542-B
Name Company Catalog Number Comments
Mat Tek Corp Glass Bottom Mircrowell Dish Fisher Scientific P35G-0-14-C
Active Dried Yeast Fisher Scientific ICN10140001
Confocal Microscope Carl Zeiss LSM 700
Dumont #5 Forceps Fine Science Technologies 11251-20
Moria Nickel Plated Pin Holder Fine Science Technologies 26016-12
Minutien Pins Fine Science Technologies 26002-15
MYFP ( w[*]; P{w[+mC]=sqh-EYFP-Mito}3 ) Bloomington Stock Center 7194
Fly Pad Fly stuff 59-118
Blowgun Fly stuff 54-104
Blowgun needle Flystuff 54-119
Dissecting Microscope Carl Zeiss Stemi 2000
Analyses software Carl Zeiss Zen 
Analyses software Open source Image J
Research Macro Zoom Microscope Olympus MVX10
QICAM Fast 1394 Cooled Digital Camera, 12-bit, Mono  QImaging QIC-F-M-12-C
QCapture Pro 5.1 QImaging

References

  1. Nunnari, J., Suomalainen, A. Mitochondria: in sickness and in health. Cell. 148 (6), 1145-1159 (2012).
  2. Youle, R. J., van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science. 337 (6098), 1062-1065 (2012).
  3. Mitra, K. Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation. Bioessays. , (2013).
  4. Kageyama, Y., Zhang, Z., Sesaki, H. Mitochondrial division: molecular machinery and physiological functions. Curr Opin Cell Biol. 23 (4), 427-434 (2011).
  5. Chen, H., Chan, D. C. Physiological functions of mitochondrial fusion. Ann N Y Acad Sci. 1201, 21-25 (2010).
  6. Liesa, M., Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17 (4), 491-506 (2013).
  7. Hoppins, S. The regulation of mitochondrial dynamics. Curr Opin Cell Biol. 29, 46-52 (2014).
  8. Mitra, K., Lippincott-Schwartz, J. Chapter 4, Analysis of mitochondrial dynamics and functions using imaging approaches. Curr Protoc Cell Biol. Chapter. , 21-21 (2010).
  9. Mitra, K., Rikhy, R., Lilly, M., Lippincott-Schwartz, J. DRP1-dependent mitochondrial fission initiates follicle cell differentiation during Drosophila oogenesis. J Cell Biol. 197 (4), 487-497 (2012).
  10. Klusza, S., Deng, W. M. At the crossroads of differentiation and proliferation: precise control of cell-cycle changes by multiple signaling pathways in Drosophila follicle cells. Bioessays. 33 (2), 124-134 (2011).
  11. Sahai-Hernandez, P., Castanieto, A., Nystul, T. G. Drosophila models of epithelial stem cells and their niches. Wiley Interdiscip Rev Dev Biol. 1 (3), 447-457 (2012).
  12. Parker, D. J., et al. A new mitochondrial pool of cyclin E, regulated by Drp1, is linked to cell-density-dependent cell proliferation. J Cell Sci. 128 (22), 4171-4182 (2015).
  13. Mitra, K., Wunder, C., Roysam, B., Lin, G., Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci U S A. 106 (29), 11960-11965 (2009).
  14. Shidara, Y., Hollenbeck, P. J. Defects in mitochondrial axonal transport and membrane potential without increased reactive oxygen species production in a Drosophila model of Friedreich ataxia. J Neurosci. 30 (34), 11369-11378 (2010).
  15. Zielonka, J., Kalyanaraman, B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med. 48 (8), 983-1001 (2010).
  16. Haack, T., Bergstralh, D. T., St Johnston, D. Damage to the Drosophila follicle cell epithelium produces "false clones" with apparent polarity phenotypes. Biol Open. 2 (12), 1313-1320 (2013).
  17. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem J. 417 (1), 1-13 (2009).
  18. Mandal, S., Guptan, P., Owusu-Ansah, E., Banerjee, U. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev Cell. 9 (6), 843-854 (2005).
  19. Tipping, M., Perrimon, N. Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol. 229 (1), 27-33 (2014).
  20. Herranz, H., Eichenlaub, T., Cohen, S. M. Cancer in Drosophila: Imaginal Discs as a Model for Epithelial Tumor Formation. Curr Top Dev Biol. 116, 181-199 (2016).
  21. Pandey, U. B., Nichols, C. D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 63 (2), 411-436 (2011).
check_url/fr/54989?article_type=t

Play Video

Citer Cet Article
Parker, D. J., Moran, A., Mitra, K. Studying Mitochondrial Structure and Function in Drosophila Ovaries. J. Vis. Exp. (119), e54989, doi:10.3791/54989 (2017).

View Video