Summary

Estudiar mitocondrial Estructura y función en<em> Drosophila</em> Los ovarios

Published: January 04, 2017
doi:

Summary

Analysis of the mitochondrial structure-function relationship is required for a thorough understanding of the regulatory mechanisms of mitochondrial functionality. Specific methods for studying mitochondrial structure and function in live and fixed Drosophila ovaries are described and demonstrated in this paper.

Abstract

Analysis of the mitochondrial structure-function relationship is required for a thorough understanding of the regulatory mechanisms of mitochondrial functionality. Fluorescence microscopy is an indispensable tool for the direct assessment of mitochondrial structure and function in live cells and for studying the mitochondrial structure-function relationship, which is primarily modulated by the molecules governing fission and fusion events between mitochondria. This paper describes and demonstrates specific methods for studying mitochondrial structure and function in live as well as in fixed tissue in the model organism Drosophila melanogaster. The tissue of choice here is the Drosophila ovary, which can be isolated and made amenable for ex vivo live confocal microscopy. Furthermore, the paper describes how to genetically manipulate the mitochondrial fission protein, Drp1, in Drosophila ovaries to study the involvement of Drp1-driven mitochondrial fission in modulating the mitochondrial structure-function relationship. The broad use of such methods is demonstrated in already-published as well as in novel data. The described methods can be further extended towards understanding the direct impact of nutrients and/or growth factors on the mitochondrial properties ex vivo. Given that mitochondrial dysregulation underlies the etiology of various diseases, the described innovative methods developed in a genetically tractable model organism, Drosophila, are anticipated to contribute significantly to the understanding of the mechanistic details of the mitochondrial structure-function relationship and to the development of mitochondria-directed therapeutic strategies.

Introduction

Las mitocondrias se describen clásicamente como el centro energético celular, ya que son los principales asientos de la producción de energía en las células diferenciadas. Por otra parte, las mitocondrias desempeñan un papel crítico en el metabolismo, la generación de calor, la modificación de los lípidos, calcio y homeostasis redox, la orquestación de los procesos de señalización celular, etc 1. Las mitocondrias juegan también un papel activo en la inducción de muerte celular 2, así como en la regulación del ciclo celular 3. Tal multifuncionalidad plantea las siguientes cuestiones fundamentales: a) ¿cómo mitocondrias realizan todas estas funciones simultáneamente y b) hay piscinas mitocondriales específicos o subzonas que están especializados para funciones distintas? En este contexto, es importante observar que las mitocondrias multifuncionales son dinámicas en su forma, tamaño, y la estructura dentro de las células individuales y que la forma de estado estacionario de las mitocondrias pueden variar entre los tipos de células. Décadas de investigación de diversos laboratoriosoratorios sugieren que la alteración de la forma mitocondrial, tamaño y estructura, colectivamente llamados dinámica mitocondrial, es crucial para el mantenimiento de varias funciones mitocondriales 4,5,6. Estos resultados plantean la posibilidad de que las mitocondrias pueden cumplir con su multifuncionalidad en virtud de su dinamismo estructural.

Extensas se están realizando esfuerzos para comprender la relación estructura-función mitocondrial. El dinamismo de la estructura mitocondrial se mantiene principalmente por su capacidad para someterse a eventos de fisión y de fusión entre sí. La fisión de grandes mitocondrias los convierte en elementos mitocondriales más pequeños, mientras que la fusión entre dos pequeñas mitocondrias y los integra en un elemento más grande mitocondrial 7. Por otra parte, la fusión transitoria de dos mitocondria puede ocurrir para permitir la mezcla de su contenido. Los sucesos de fisión y la fusión de las membranas mitocondriales interna y externa son cuidadosamente rigen por specIFIC conjuntos de proteínas. La maquinaria núcleo de fisión se compone de la proteína relacionada con dynamin-1 (Drp1), que se reclutó desde el citosol a las mitocondrias por su interacción con cierto bona proteínas mitocondriales fide (por ejemplo, fis1 o Mff1), mientras que la función Drp1 también puede ser regulada por otras proteínas en la superficie mitocondrial 4. Aunque Drp1 opera en la membrana externa, sus capacidades de fisión impacto de la membrana interna, así. La orquestación de la fisión de las membranas mitocondriales externas e internas no se entiende bien. Por otra parte, la fusión de la membrana interna se rige en el núcleo por las actividades de OPA1, mientras mitofusins gobiernan la fusión de la membrana externa 5. El resto de los eventos que contrarrestan de fisión y de fusión de mitocondrias dictan la forma mitocondrial de estado estable en una célula. Por ejemplo, la represión de la fisión mitocondrial daría lugar a una fusión completa y sin oposición, mientras que el exceso de actividad de las mitocondriasl fisión daría lugar a la fragmentación de las mitocondrias 3.

El estudio de la relación estructura-función mitocondrial implica principalmente dos enfoques complementarios: a) análisis de los fenotipos celulares de Organismos y después de la manipulación genética de las proteínas de la fisión / fusión mitocondrial y b) las evaluaciones directas de la estructura y la función mitocondrial. Es digno de mención que los análisis genéticos no siempre pueden revelar la funcionalidad directa de la molécula en cuestión (en este caso, las proteínas de fisión / fusión mitocondrial), como pueden surgir los fenotipos debido a los efectos secundarios. Por lo tanto, es de suma importancia para el desarrollo y el uso de herramientas para estudiar la estructura y la función mitocondrial directamente. Cualquier evaluación de la estructura mitocondrial implica varias herramientas de microscopía. El uso de microscopía de fluorescencia de células vivas ha avanzado mucho los estudios de dinámica mitocondrial, ya que el dinamismo mitocondrial se puede monitorizar tanto cualitativa como cuantitatIVELY utilizando las herramientas y técnicas de microscopía de fluorescencia 8 apropiadas. Herramientas basadas en la microscopía de fluorescencia se han desarrollado para estudiar la estructura y la función mitocondrial en los tejidos vivos melanogaster y Drosophila fijos, elucidar la importancia de dinamismo mitocondrial in vivo 9. Estos y métodos relacionados se describen aquí, con el objetivo de estudiar la estructura y la función mitocondrial en el ovario Drosophila.

El ovario de Drosophila consiste en la línea germinal y somática linajes, que surgen de sus respectivas células madre adultas que residen en el germarium 10,11. Dieciséis células germinales sincitial (GCS) quedan encapsulados por las células del folículo somáticas (FCS) para formar cámaras de huevos individuales que emergen de la germarium (Figura 1). Uno de los 16 GC se confirmen a convertirse en un ovocito, y los restantes 15 GC se desarrollan en células enfermeras que apoyan el crecimiento de la cámara de ovocitos, Facilitando la maduración del huevo antes de que sea puesto a nadie. La mayoría de las FCs se someten a 9 rondas de divisiones mitóticas antes de que salgan del ciclo celular mitótico para diferenciar terminales en una capa de células epiteliales modelado que consiste en células anterior del folículo (AFCS), las células del folículo posterior (PFC), y las células del cuerpo principal (MBC) . Las cámaras de huevos consecutivos están conectados por las células tallo, que son las células que también se derivan de los bloques FC temprano en el desarrollo diferenciados. Mitocondrial forma regulada por la proteína mitocondrial Drp1 fisión participa activamente en el proceso de diferenciación durante el desarrollo normal de la capa de FC ovario de Drosophila 9,12. Aquí se describen los métodos usados en estos estudios para identificar la participación de Drp1 en el desarrollo de la capa de células del folículo Drosophila.

Protocol

1. Preparación de Drosophila (las herramientas necesarias se representan en la figura 2A) Para cualquiera de los experimentos descritos, recoger Drosophila (mantenida a temperatura ambiente, o 25 ° C) dentro de los 5 días de la eclosión y colocarlos en un vial lleno con 5-7 ml de Drosophila alimentos (ver Materiales Tabla), con no más de 25 moscas en cada vial; mantener una relación mujer: hombre de 2: 1. Se espolvorea con una pequeña cantidad de le…

Representative Results

Los métodos descritos se pueden utilizar para estudiar la estructura y la función mitocondrial en los ovarios de Drosophila vivas y fijos (Figura 2B). Se proporcionan algunos ejemplos de los resultados anticipados obtenidos con los métodos descritos. Disección del ovario Drosophila: Cuando diseccionado adicional, los abdómenes cortadas (Figura 3B) de la totalidad …

Discussion

Los pasos críticos dentro del Protocolo

Photobleaching: Prevención de photobleaching indebida de muestras fluorescentes es absolutamente necesario para la realización de la microscopía confocal eficiente. Por lo tanto, el tiempo utilizado para localizar muestras a través del ocular o para establecer los parámetros de adquisición de imágenes a través del modo de escaneado directo debe reducirse al mínimo para reducir al mínimo photobleaching.

<p class="jove_con…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We acknowledge Leena Patel and Diamond Woodard for helping in the Drosophila medium preparation and Dr. Igor Chesnokov for providing access to the camera-attached stereomicroscope.

Materials

Grace's Media (Insect Dissecting Medium) Fisher Scientific 30611031-2
41 Paraformaldehyde AQ Electronic Microscopy Sciences 50-259-99
Mitotracker Green (overall mitochondrial stain) Life Technologies m7514 Reconstitute and Aliquot
Tetramethylrhodamine ethyl ester perchlorate Sigma Aldrich 87917-25MG Reconstitute and Aliquot
MitoSox (Mito-Ros stain) Life Technologies m36008 Reconstitute and Aliquot
PolyLysine MP Biomedicals ICN15017625
Fly Vials Fisher Scientific AS-515
Fly Conicals Fisher Scientific AS-355
Fly Vial Flugs Fisher Scientific AS273
Fly Conical Flugs Fisher Scientific AS 277
Jazzmix Drosophila food (Drosophila food) Fisher Scientific AS153
Bovine Serum Albumin Sigma Aldrich A9647-50G
Cyclin E Antibody (d-300) Santa Cruz sc- 33748
ATPB antibody [3D5] – Mitochondrial Marker AbCam ab14730
Cy3 AffiniPure Goat Anti-Mouse IgG (H+L) Jackson ImmunoResearch 115-165-146
Cy5 AffiniPure Goat Anti-Rabbit IgG (H+L) Jackson ImmunoResearch 111-175-144
Hoechst Fisher Scientific H3570
VectaShield Fisher Scientific H100
Azer Scientific EverMark Select Microscope Slides Fisher Scientific 22-026-252
Microscope Cover Glass Fisher Scientific 12-542-B
Name Company Catalog Number Comments
Mat Tek Corp Glass Bottom Mircrowell Dish Fisher Scientific P35G-0-14-C
Active Dried Yeast Fisher Scientific ICN10140001
Confocal Microscope Carl Zeiss LSM 700
Dumont #5 Forceps Fine Science Technologies 11251-20
Moria Nickel Plated Pin Holder Fine Science Technologies 26016-12
Minutien Pins Fine Science Technologies 26002-15
MYFP ( w[*]; P{w[+mC]=sqh-EYFP-Mito}3 ) Bloomington Stock Center 7194
Fly Pad Fly stuff 59-118
Blowgun Fly stuff 54-104
Blowgun needle Flystuff 54-119
Dissecting Microscope Carl Zeiss Stemi 2000
Analyses software Carl Zeiss Zen 
Analyses software Open source Image J
Research Macro Zoom Microscope Olympus MVX10
QICAM Fast 1394 Cooled Digital Camera, 12-bit, Mono  QImaging QIC-F-M-12-C
QCapture Pro 5.1 QImaging

References

  1. Nunnari, J., Suomalainen, A. Mitochondria: in sickness and in health. Cell. 148 (6), 1145-1159 (2012).
  2. Youle, R. J., van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science. 337 (6098), 1062-1065 (2012).
  3. Mitra, K. Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation. Bioessays. , (2013).
  4. Kageyama, Y., Zhang, Z., Sesaki, H. Mitochondrial division: molecular machinery and physiological functions. Curr Opin Cell Biol. 23 (4), 427-434 (2011).
  5. Chen, H., Chan, D. C. Physiological functions of mitochondrial fusion. Ann N Y Acad Sci. 1201, 21-25 (2010).
  6. Liesa, M., Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17 (4), 491-506 (2013).
  7. Hoppins, S. The regulation of mitochondrial dynamics. Curr Opin Cell Biol. 29, 46-52 (2014).
  8. Mitra, K., Lippincott-Schwartz, J. Chapter 4, Analysis of mitochondrial dynamics and functions using imaging approaches. Curr Protoc Cell Biol. Chapter. , 21-21 (2010).
  9. Mitra, K., Rikhy, R., Lilly, M., Lippincott-Schwartz, J. DRP1-dependent mitochondrial fission initiates follicle cell differentiation during Drosophila oogenesis. J Cell Biol. 197 (4), 487-497 (2012).
  10. Klusza, S., Deng, W. M. At the crossroads of differentiation and proliferation: precise control of cell-cycle changes by multiple signaling pathways in Drosophila follicle cells. Bioessays. 33 (2), 124-134 (2011).
  11. Sahai-Hernandez, P., Castanieto, A., Nystul, T. G. Drosophila models of epithelial stem cells and their niches. Wiley Interdiscip Rev Dev Biol. 1 (3), 447-457 (2012).
  12. Parker, D. J., et al. A new mitochondrial pool of cyclin E, regulated by Drp1, is linked to cell-density-dependent cell proliferation. J Cell Sci. 128 (22), 4171-4182 (2015).
  13. Mitra, K., Wunder, C., Roysam, B., Lin, G., Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci U S A. 106 (29), 11960-11965 (2009).
  14. Shidara, Y., Hollenbeck, P. J. Defects in mitochondrial axonal transport and membrane potential without increased reactive oxygen species production in a Drosophila model of Friedreich ataxia. J Neurosci. 30 (34), 11369-11378 (2010).
  15. Zielonka, J., Kalyanaraman, B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med. 48 (8), 983-1001 (2010).
  16. Haack, T., Bergstralh, D. T., St Johnston, D. Damage to the Drosophila follicle cell epithelium produces "false clones" with apparent polarity phenotypes. Biol Open. 2 (12), 1313-1320 (2013).
  17. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem J. 417 (1), 1-13 (2009).
  18. Mandal, S., Guptan, P., Owusu-Ansah, E., Banerjee, U. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev Cell. 9 (6), 843-854 (2005).
  19. Tipping, M., Perrimon, N. Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol. 229 (1), 27-33 (2014).
  20. Herranz, H., Eichenlaub, T., Cohen, S. M. Cancer in Drosophila: Imaginal Discs as a Model for Epithelial Tumor Formation. Curr Top Dev Biol. 116, 181-199 (2016).
  21. Pandey, U. B., Nichols, C. D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 63 (2), 411-436 (2011).
check_url/fr/54989?article_type=t

Play Video

Citer Cet Article
Parker, D. J., Moran, A., Mitra, K. Studying Mitochondrial Structure and Function in Drosophila Ovaries. J. Vis. Exp. (119), e54989, doi:10.3791/54989 (2017).

View Video