Summary

सिर और गर्दन के स्क्वैमस सेल कार्सिनोमा में Perineural आक्रमण के लिए एक मॉडल

Published: January 05, 2017
doi:

Summary

Perineural invasion (PNI) is a common feature of head and neck squamous cell carcinoma (HNSCC), conferring lower survival rates. Its mechanisms are poorly understood. Utilizing neurites generated from murine dorsal root ganglia confined to a semisolid matrix, the pathways involved in the PNI of HNSCC cell lines can be investigated.

Abstract

Perineural invasion (PNI) is found in approximately 40% of head and neck squamous cell carcinomas (HNSCC). Despite multimodal treatment with surgery, radiation, and chemotherapy, locoregional recurrences and distant metastases occur at higher rates, and overall survival is decreased by 40% compared to HNSCC without PNI. In vitro studies of the pathways involved in HNSCC PNI have historically been challenging given the lack of a consistent, reproducible assay. Described here is the adaptation of the dorsal root ganglion (DRG) assay for the examination of PNI in HNSCC. In this model, DRG are harvested from the spinal column of a sacrificed nude mouse and placed within a semisolid matrix. Over the subsequent days, neurites are generated and grow in a radial pattern from the cell bodies of the DRG. HNSCC cell lines are then placed peripherally around the matrix and invade preferentially along the neurites toward the DRG. This method allows for rapid evaluation of multiple treatment conditions, with very high assay success rates and reproducibility.

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer in the US, with 10,000 deaths per year nationally and 300,000 deaths per year worldwide1. The overall prognosis for HNSCC has remained unchanged at 50% for the past several decades. Perineural invasion (PNI) is one of the most prominent pathological features that portend a poor prognosis in patients with HNSCC. Unfortunately, PNI is a frequent occurrence in HNSCC and can be found in up to 40% of HNSCC patients2,3.

PNI is the process by which malignant cells track along nerves to adjacent tissues, allowing for higher rates of local and distant spread. Accordingly, PNI-positive HNSCC tumors have higher rates of locoregional recurrences and distant metastases, resulting in lower overall survival compared to HNSCC patients without PNI4-8.

Although the treatment of patients with PNI is typically maximized by employing surgery, radiation, and chemotherapy, the overall survival rates of these patients are still decreased by up to 40% compared to patients without PNI9-11. Thus, it is clear that the current treatment modalities for HNSCC are ineffective in improving the adverse prognosis associated with PNI. The approach of developing targeted therapy against PNI in HNSCC has been hindered by the poor understanding of the factors that regulate this process. This is, in part, a consequence of the lack of a consistent in vitro model for the study of PNI in HNSCC.

In recent years, several groups have been utilizing an in vitro model for studying PNI in predominantly pancreatic and prostate cancers12-19. This model uses the neurites generated from dorsal root ganglia isolated from mice or rats as a surrogate for large-nerve invasion. The dorsal root ganglia are fixed in a factor-depleted semisolid matrix, which is a solubilized basement membrane protein mixture secreted by Engelbreth-Holm-Swarm mouse sarcoma cells. This matrix allows for the outgrowth of the neurites and the tracking of single cancer cells along these neurites. Described here is the adaption of this model for the examination of PNI in HNSCC.

Protocol

1. मध्यम संस्कृति की तैयारी और व्यंजन (10 मिनट) 100 Dulbecco संशोधित ईगल मध्यम (DMEM) 10% भ्रूण गोजातीय सीरम (FBS) एक 96 अच्छी तरह से वी के नीचे प्लेट के कुओं के लिए साथ की μL जोड़ें। 20 डिग्री सेल्सियस फ्रीजर से semisolid मैट्…

Representative Results

डीआरजी का विच्छेदन और मैट्रिक्स छोटी बूंद के भीतर नियुक्ति के बाद, परख की उपस्थिति के समान होना चाहिए चित्रा 1. ध्यान दें कि डीआरजी पूरी तरह गोल नहीं है, लेकिन यह मैट्रिक्स छोटी बूंद क?…

Discussion

प्रोटोकॉल के भीतर महत्वपूर्ण कदम

इस प्रोटोकॉल के भीतर सबसे महत्वपूर्ण कदम सटीक विच्छेदन और पृष्ठीय रूट ganglia की निकासी कर रहे हैं। दो अर्ध-कांटा में स्पाइनल कॉलम और एक midline अनुदैर्ध्य वि…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported in whole by funding from the NIH through the R21 grant, “Mechanisms of Perineural Invasion in Head and Neck Cancer” and the NCI T32 training grant, “Post-Doctoral Research Training in Head and Neck Oncology (2T32CA060397-21).” Thank you to Richard Steiman, MD, PhD and lab staff.

Materials

DMEM/F-12 50/50 Mix with L-glutamine & 15mM HEPES Corning Cellgro 10-090-CV Manassas, VA
Fetal bovine serum Atlanta biologicals S11150 Flowery Branch, GA
0.25% Trypsin-EDTA (1x) Life Technologies Corporation 25200056 Grand Island, NY
Phosphate buffered Saline 1x Corning 21-040-CM Manassas, VA
Matrigel hESC-Qualif Mouse Corning Incorporated 354277 Bedford, MA
Gamma Irradiated 35mm glass bottom culture dishes MatTek Corporation P35G-1.5-14-C Ashland, MA
SteREO Discovery.V8 Operating Microscope Carl Zeiss Microimaging 495015-0021-000  Thornwood, NY
Schott ACE I light source Schott A20500 Germany
CellTracker  Life Technologies Corporation C2925 Carlsbad, CA
BD PrecisionGlide Needle 18G and 21G BD 305195 Franklin Lakes, NJ
Premium Microdissecting Tweezer Harvard Apparatus 60-3851 Holliston, MA
Premium Fine Operating Standard Scissors Harvard Apparatus 52-2789 Holliston, MA
Premium Spring Scissors Harvard Apparatus 60-3923 Holliston, MA
Dressing Forceps Harvard Apparatus 72-8949 Holliston, MA
Athymic nude mice (002019) Jackson Laboratory 002019 Bar Harbor, ME

References

  1. Jemal, A., et al. Cancer statistics, 2006. CA Cancer J Clin. 56 (2), 106-130 (2006).
  2. Hinerman, R. W., et al. Postoperative irradiation for squamous cell carcinoma of the oral cavity: 35-year experience. Head Neck. 26 (11), 984-994 (2004).
  3. Rahima, B., Shingaki, S., Nagata, M., Saito, C. Prognostic significance of perineural invasion in oral and oropharyngeal carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 97 (4), 423-431 (2004).
  4. Woolgar, J. A., Scott, J. Prediction of cervical lymph node metastasis in squamous cell carcinoma of the tongue/floor of mouth. Head Neck. 17 (6), 463-472 (1995).
  5. Tai, S. K., et al. Treatment for T1-2 oral squamous cell carcinoma with or without perineural invasion: neck dissection and postoperative adjuvant therapy. Ann Surg Oncol. 19 (6), 1995-2002 (2012).
  6. George, D. L., et al. Nosocomial sinusitis in patients in the medical intensive care unit: a prospective epidemiological study. Clin Infect Dis. 27 (3), 463-470 (1998).
  7. Fagan, J. J., et al. Perineural invasion in squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg. 124 (6), 637-640 (1998).
  8. Soo, K. C., et al. Prognostic implications of perineural spread in squamous carcinomas of the head and neck. Laryngoscope. 96 (10), 1145-1148 (1986).
  9. Parsons, J. T., Mendenhall, W. M., Stringer, S. P., Cassisi, N. J., Million, R. R. An analysis of factors influencing the outcome of postoperative irradiation for squamous cell carcinoma of the oral cavity. Int J Radiat Oncol Biol Phys. 39 (1), 137-148 (1997).
  10. Liao, C. T., et al. Does adjuvant radiation therapy improve outcomes in pT1-3N0 oral cavity cancer with tumor-free margins and perineural invasion. Int J Radiat Oncol Biol Phys. 71 (2), 371-376 (2008).
  11. Fan, K. H., et al. Treatment results of postoperative radiotherapy on squamous cell carcinoma of the oral cavity: coexistence of multiple minor risk factors results in higher recurrence rates. Int J Radiat Oncol Biol Phys. 77 (4), 1024-1029 (2010).
  12. Dai, H., et al. Enhanced survival in perineural invasion of pancreatic cancer: an in vitro approach. Hum Pathol. 38 (2), 299-307 (2007).
  13. Ceyhan, G. O., et al. Neural invasion in pancreatic cancer: a mutual tropism between neurons and cancer cells. Biochem Biophys Res Commun. 374 (3), 442-447 (2008).
  14. Gil, Z., et al. Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves. J Natl Cancer Inst. 102 (2), 107-118 (2010).
  15. He, S., et al. GFRalpha1 released by nerves enhances cancer cell perineural invasion through GDNF-RET signaling. Proc Natl Acad Sci U S A. 111 (19), 2008-2017 (2014).
  16. He, S., et al. The chemokine (CCL2-CCR2) signaling axis mediates perineural invasion. Mol Cancer Res. 13 (2), 380-390 (2015).
  17. Bakst, R. L., et al. Radiation impairs perineural invasion by modulating the nerve microenvironment. PLoS One. 7 (6), 39925 (2012).
  18. Ayala, G. E., et al. In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural invasion in prostate cancer. Prostate. 49 (3), 213-223 (2001).
  19. Na’ara, S., Gil, Z., Amit, M. In Vitro Modeling of Cancerous Neural Invasion: The Dorsal Root Ganglion. J Vis Exp. (110), (2016).
check_url/fr/55043?article_type=t

Play Video

Citer Cet Article
Huyett, P., Gilbert, M., Liu, L., Ferris, R. L., Kim, S. A Model for Perineural Invasion in Head and Neck Squamous Cell Carcinoma. J. Vis. Exp. (119), e55043, doi:10.3791/55043 (2017).

View Video