Summary

Fleksibel Hydrogeler fra Lunge ekstracellulær matriks for 3D Cell Culture

Published: January 17, 2017
doi:

Summary

Dette er en metode for å lage en tre-dimensjonal cellekultur stillaset fra lunge ekstracellulære matriks. Intakt lunge blir bearbeidet til hydrogeler som kan understøtte veksten av celler i tre dimensjoner.

Abstract

Her presenterer vi en fremgangsmåte for å etablere flere komponentcellekultur hydrogeler for in vitro lungecellekultur. Fra og med sunn en bloc lungevev fra svin, rotte eller mus, er vevet perfused og nedsenket i påfølgende kjemiske vaskemidler for å fjerne cellerester. Histologisk sammenligning av vev før og etter behandling bekrefter fjernet over 95% av dobbeltkjedet DNA og alfa-galaktosidase farging antyder de fleste av cellerester fjernes. Etter decellularization, er vevet lyofilisert og deretter cryomilled til et pulver. Matrisen pulver oppløses i 48 timer i en sur løsning fordøyelsen pepsin og deretter nøytraliseres til å danne det Pregel oppløsning. Gelering av Pregel oppløsningen kan induseres ved inkubering ved 37 ° C og kan brukes umiddelbart etter nøytralisering eller lagret ved 4 ° C i opptil to uker. Belegg kan dannes ved hjelp av Pregel løsning på en ubehandlet plate for cell vedlegg. Celler kan bli suspendert i Pregel før selv-montering for å oppnå en 3D-kultur, belagt på overflaten av en formet gel hvorfra cellene kan migrere inn i stillaset, eller belagt på beleggene. Endringer i strategien presenteres kan påvirke geleringstemperaturen, styrke eller proteinfragmentstørrelser. Utover hydrogel formasjon, kan hydrogelen stivhet økes ved å bruke genipin.

Introduction

Translating in vitro results to the clinic is one of the most challenging issues facing biomedical researchers. In vitro research on tissue culture plastic is easier, more convenient, and maintains high cell viability.1 This approach is a reasonable starting point, but the results have limited clinical translation. Increasingly, laboratories are incorporating three-dimensional constructs to replace the traditional two-dimensional methods. Reviews are available for many three-dimensional environments, from biological scaffolds to polymeric scaffolds.2,3

Biological frameworks can mimic characteristics of in vivo environments as they contain many of the protein and glycosaminoglycan components of the native matrix and provide familiar binding sites for cells to attach to and recognize. Extracellular matrix (ECM) derived materials have been shown to be capable scaffolds for cell attachment and proliferation.4 One challenge that limits the application of ECM hydrogel platforms stems from their inherently weak mechanical properties following gelation. Native tissue often has mechanical properties that are magnitudes higher than hydrogels. Non-toxic crosslinking agents can increase the mechanical properties of hydrogels to better mimic the native tissue environment. Genipin is a non-toxic, natural crosslinker derived from Gardenia plants with the ability to closely tailor mechanical properties of ECM with changes in genipin concentration5,6.

Nearly all cells in the body exist in, and organize on, ECM that they either produce or maintain. New focus on the universal importance of ECM in the organization, condition, and function in every organ or system has sparked the production of matrix based platforms for in vitro investigation. Porcine small intestine submucosa is the most extensively studied naturally-derived scaffold, and it has been used to regenerate tendons, ligaments, skeletal muscle4, and even bone7. Matrices from other organs and donor species have also demonstrated good tissue regeneration potential. The use of foreign ECM components causes minimal issues with immunomodulation. After elimination of host cellular matter, the remaining ECM will be similar in amino acid content and organization to all other mammalian species8. There is a growing line of thinking that the best way to examine cell-ECM interactions in vitro is to utilize organ-specific ECM scaffolds. Each organ provides a unique composition of proteins and proteoglycans to create cellular niches. Niches provide structural, functional and even the enzymatic breakdown of the extracellular matrix contributing to biophysical signaling. To attain an in vitro microenvironment most similar to the in vivo microenvironment, use of tissue specific ECM would optimize the cellular niches for research.

The goal of this protocol is to provide a method for establishing a hydrogel scaffold unique to the lung ECM. This method provides a platform for in vitro research on lung cell-ECM interactions.

Protocol

Løsning steril Filter Veibeskrivelse DIH 2 O Ja DIH 2 O; steril filtrert 0,1% Triton X-100 Løsnings Ja Under avtrekk Tilsett 100 Triton-X 100 Solution til 100 ml DIH 2 O og agitere til det er oppløst; sterilt filter. 2% deoxycholate …

Representative Results

Ved hjelp av denne metoden, har vi produsert hydrogeler fra normal gris, rotte og mus lungene (figur 1). Behandlet lungene tilveiebringe en estimert 5 mg, 40 mg, og 10 g av ECM pulver hhv. En oversikt over fremgangsmåten er vist i figur 2. Nøkkelvisualiseringer i løpet av prosessen er: hvitt utseende i lungene etter skylling deoksycholat; etter Pregel formasjon, bør løsningen være ugjennomsiktig og løsningen skal vises homogen i flere måneder hvi…

Discussion

En av de integrerte aspekter av biologi er selvorganisering av molekyler i hierarkiske strukturer som utfører en bestemt oppgave. 13 I laboratoriet, avhenger selv-sammenstillingen på en rekke faktorer som for eksempel saltkonsentrasjon, pH-verdi, og fordøyelse varighet. Som vist, et selvorganiserende hydrogel dannes når solubiliserte proteiner som går tilbake til et fysiologisk temperatur. Den hydrogel som dannes er i stand til å fremme cellulær festing og formering in vitro.

<p class="jov…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Vi vil gjerne takke Smith gårder for å donere intakt svin lungevevet. Vi ønsker også å takke Dr. Hu Yang, Dr. Christina Tang og VCU plastisk kirurgi Avdeling for å tillate oss å bruke deres utstyr. Hydrogel og vevsprøver var forberedt på SEM ved VCU Institutt for anatomi og nevrobiologi Mikros Facility støttes delvis av midler fra NIH-ninds Senter Kjerne Grant 5 P30 NS047463 og dels av midler skjema NIH-NCI Cancer Center Support Grant P30 CA016059. SEM avbildning av prøvene på VCU Nanoteknologi Kjerne Karakterisering Facility (NCC). Dette arbeidet ble finansiert av National Science Foundation, CMMI 1.351.162.

Materials

Triton X-100  Fisher Scientific BP151-100 Use in fume hood with eye protection and gloves.
Sodium Deoxycholate Sigma-Aldrich D6750-100g Use with eye protection and gloves.
Magnesium Sulfate Sigma-Aldrich M7506-500g None
Calcium Chloride Sigma-Aldrich C1016-500g None
DNase Sigma-Aldrich D5025-150KU None
HCl Sigma-Aldrich 258148-500ML Use with eye protection and gloves.
Pepsin Sigma-Aldrich P6887-5G Use in fume hood with eye protection and gloves.
Sodium Hydroxide Fisher Scientific BP359-500 Use with eye protection and gloves.
Genipin Wako Chemicals 078-03021 Use in fume hood with eye protection and gloves.
PBS 10x Quality Biological 119-069-151 None
PBS VWR 45000-448 None
Filter Paper Whatman 8519 N/A
Hand pump Fisher Scientific 10-239-1 N/A
Graduate Beaker VitLab 445941 N/A
Cryomill SPEX 6700 Use cryogloves and eye protection.
Lyophilizer FTS FlexiDry Use gloves.
Rheometer Discovery HR-2 Use gloves and eye protection.

References

  1. Lee, J., Cuddihy, M., Kotov, N. . Three-Dimensional Cell Culture Matrices: State of the Art. 14, (2008).
  2. Haycock, J. W. . 3D Cell Culture. , (2011).
  3. Walker, J. M., Ed, . Epithelial cell culture protocols. , (2012).
  4. Badylak, S. F., Freytes, D. O., Gilbert, T. W. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 5 (1), 1-13 (2009).
  5. Koo, H. -. J., Lim, K. -. H., Jung, H. -. J., Park, E. -. H. Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. J. Ethnopharmacol. 103 (3), 496-500 (2006).
  6. Jeffords, M. E., Wu, J., Shah, M., Hong, Y., Zhang, G. Tailoring Material Properties of Cardiac Matrix Hydrogels to Induce Endothelial Differentiation of Human Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces. 7 (20), 11053-11061 (2015).
  7. Suckow, M. A., Voytik-Harbin, S. L., Terril, L. A., Badylak, S. F. Enhanced bone regeneration using porcine small intestinal submucosa. J. Invest. Surg. 12 (5), 277-287 (1998).
  8. Brown, B. N., Badylak, S. F. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl. Res. J. Lab. Clin. Med. 163 (4), 268-285 (2014).
  9. Pouliot, R. A., et al. Development and characterization of a naturally derived lung extracellular matrix hydrogel. J.Biomed.Mater.Res.A. , (2016).
  10. Price, A. P., England, K. A., Matson, A. M., Blazar, B. R., Panoskaltsis-Mortari, A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng. Part A. 16 (8), 2581-2591 (2010).
  11. Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S., Badylak, S. F. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 29 (11), 1630-1637 (2008).
  12. Tilghman, R. W., et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. PloS One. 5 (9), e12905 (2010).
  13. Ratner, B. D., Bryant, S. J. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41-75 (2004).
  14. Fridman, R., Benton, G., Aranoutova, I., Kleinman, H. K., Bonfil, R. D. Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection. Nat Protoc. 7 (6), 1138-1144 (2012).
  15. Zhang, W. -. J., et al. The reconstruction of lung alveolus-like structure in collagen-matrigel/microcapsules scaffolds in vitro. J. Cell. Mol. Med. 15 (9), 1878-1886 (2011).
  16. Booth, A. J., et al. Acellular Normal and Fibrotic Human Lung Matrices as a Culture System for In Vitro Investigation. Am. J. Respir. Crit. Care Med. 186 (9), 866-876 (2016).
  17. Matsuda, A., et al. Evidence for human lung stem cells. N. Engl. J. Med. 364 (19), 1795-1806 (2011).
  18. Zuo, W., et al. p63+Krt5+ distal airway stem cells are essential for lung regeneration. Nature. 517 (7536), 616-620 (2015).
  19. Keane, T. J., Londono, R., Turner, N. J., Badylak, S. F. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 33 (6), 1771-1781 (2012).
  20. Neill, J. D., et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg. 96 (3), 1046-1055 (2013).
check_url/fr/55094?article_type=t

Play Video

Citer Cet Article
Link, P. A., Pouliot, R. A., Mikhaiel, N. S., Young, B. M., Heise, R. L. Tunable Hydrogels from Pulmonary Extracellular Matrix for 3D Cell Culture. J. Vis. Exp. (119), e55094, doi:10.3791/55094 (2017).

View Video