Summary

Karakterisering af Forkalkning Events med Live Optiske og elektronmikroskopi teknikker i en Marine Tubeworm

Published: February 28, 2017
doi:

Summary

We demonstrate the use of various microscopy methods that are useful in observing the calcification of a tubeworm, Hydroides elegans, as well as locating and characterizing the first calcified material. Live microscopy and electron microscopy are used together to provide functional and material information that are important in studying biomineralization.

Abstract

Characterizing the first event of biological production of calcium carbonate requires a combination of microscopy approaches. First, intracellular pH distribution and calcium ions can be observed using live microscopy over time. This allows identification of the life stage and the tissue with the feature of interest for further electron microscopy studies. Life stage and tissues of interest are typically higher in pH and Ca signals.

Here, using H. elegans, we present a protocol to characterize the presence of calcium carbonate structures in a biological specimen on the scanning electron microscope (SEM), using energy-dispersive X-ray spectroscopy (EDS) to visualize elemental composition, using electron backscatter diffraction (EBSD) to determine the presence of crystalline structures, and using transmission electron microscopy (TEM) to analyze the composition and structure of the material. In this protocol, a focused ion beam (FIB) is used to isolate samples with dimension suitable for TEM analysis. As FIB is a site specific technique, we demonstrate how information from the previous techniques can be used to identify the region of interest, where Ca signals are highest.

Introduction

Biomineralization er en kompleks serie af begivenheder, der bygger bro en suite af cellulære aktiviteter resulterer i produktion af udsøgt bestilte mineraler 1. Udfordringen er at karakterisere både den dynamiske cellulære processen og de sofistikerede mineralske strukturer ved hjælp af en kombination af optiske og elektronmikroskopi metoder. En højde af intracellulær pH fremmer dannelsen af CaCO 3-krystaller dermed identificerer livstrin der har en forøget pH afslører det tidspunkt, hvor forkalkning kan forventes at blive forekommende 2, 3.

De tubeworms fra familien Serpulidae er almindelige calcifiers i havet 4. Det er også en populær hvirvelløse model for havforskning, især i biologisk forurening 5, 6. I denne undersøgelse processen med forkalkning i mineraliseringsmidler rum during biomineralization overholdes. Den hurtige proces med metamorfose omfatter fremkomsten af calciumcarbonat strukturer 7, 8.

Vi viser, hvordan indre pH-målinger kan udføres på tubeworm, og hvordan livsstadier og væv er relevante for kalcifikation kan screenes. Efter livstrin af interesse er identificeret, kan vævet ansvarlig for forkalkning karakteriseres ved en højere opløsning ved anvendelse af elektronmikroskopi metoder. Ved hjælp af fluorescerende mikroskopi, vi bestemme den nødvendige tid til calciumcarbonat skal vises efter metamorfe induktion. Et tilsvarende tidspunkt i livet blev efterfølgende visualiseret med SEM-EDS for grundstofsammensætning distribution og den deponerede mineral blev analyseret ved hjælp af to forskellige elektronmikroskopi metoder, specielt SEM-EBSD og FIB-TEM.

Protocol

1. Screening for Life Stage og væv af interesse med live Imaging Kultur det marine larver til kompetenceudvikling i henhold til tidligere rapporterede metoder 6, 7, 9. Inkuber tubeworm larver ved 5 larver pr mL tæthed med filtreret havvand med 10 pM snarf-01:00 natten over. Dæk beholderen med aluminiumfolie for at beskytte den fluorescerende probe fra foto-blegning. Overhold larverne ved hjælp af en dis…

Representative Results

Følgende er nogle observationer af forkalkning processen under metamorfose af tubeworm. Figur 1 viser, at pH-værdierne nær kraven region er højere end de andre væv efter metamorfose. Figur 2i viser en tubeworm med homogen fordeling af Ca, hvilket tyder på nogen større forkalkning begivenheder er begyndt; Figur 2ii viser en tubeworm der har forkalkede i en længere periode, hvilket tyder på forkalkning er gået ud over den tid, se…

Discussion

Levende optisk afbildning er en nyttig metode til iagttagelse cellulære begivenheder i en multicellulær organisme. Her blev indre pH og calcium ion indikatorer anvendes til at måle strømmen af ​​ioner ved mineraliseringen sites. I disse regioner er aktiv ion pumpning kræves for at ophøje pH og Ca 2+ koncentration for at aktivere forkalkning 2, 3. Ved ansøgning fluorescerende molekyler til at studere en organisme, er det vigtigt at sikre, at…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors would like to send a big thank you to Clemson Broadcast Productions, audio recording by J. Bright, Narration by A. D. McQuiston, Audio sweetening, K. Murphy, videography by G. Spake, Graphic arts by T. Messervy, Video editing by T. Messervy and E. Rodgers. Technical assistance and scientific advice was inspired by the advice of S. Kawada, S. Kubo, J. Hudson, T. Darroudi, D. Mulwee, H. Qian, Y. W. Lam, M. B. Johnstone, C. Campanati, A. C. Lane, and R. Dineshram. This study was funded by three GRF grants from the HKSAR-RGC (Grant Numbers: 705511P, 705112P, and 17304914).

Materials

Hexamethyldisilazane  Electron Microscopy Sciences 16700(EM)
Osmium Tetroxide 2% Aqueous Solution Electron Microscopy Sciences 19192
IBMX 3-Isobutyl-1-methylxanthine ThermoFisher Scientific PHZ1124
Nigericin, Free Acid ThermoFisher Scientific N7143-5MG
35-mm-diam dish, hole size 27 mm, Glass No.0, Non-coat ThermoFisher Scientific D110400
5-(and-6)-Carboxy SNARF-1, Acetoxymethyl Ester, Acetate ThermoFisher Scientific C-1271
BDH Potassium Chloride, ACS Grade VWR BDH0258-500G
Paraformaldehyde
reagent grade, crystalline
Sigma P6148
1 M Hydrochloric Acid for Volumetric Analysis Wako Pure Chemical Industries, Ltd 083-01095
0.05 M Sodium Hydroxide Solution for Volumetric Analysis Wako Pure Chemical Industries, Ltd 199-02185
Calcein Sigma C0875
FASW Iwaki Co. Ltd. Rei-sea Marine
Mixed Cellulose Ester Membranes; 47 mm dia, 0.45 µm ADVANTEC A045A047A
ethanol Wako Pure Chemical Industries, Ltd 051-00476
Artificial seawater for buffers by SOP06 of DOE (1994), cdiac.ornl.gov/ftp/cdiac74/sop06.pdf
Sodium Chloride Wako Pure Chemical Industries, Ltd 191-01665
Potassium Chloride Wako Pure Chemical Industries, Ltd 163-03545
Magnesium Chloride Hexahydrate Wako Pure Chemical Industries, Ltd 135-00165
Calcium Chloride Wako Pure Chemical Industries, Ltd 039-00475
Sodium Sulfate Wako Pure Chemical Industries, Ltd 197-03345
Hydrochloric Acid Wako Pure Chemical Industries, Ltd 089-08415
2-amino-2-hydroxymethyl-1,3-propanediol (tris) Wako Pure Chemical Industries, Ltd 207-06275
2-aminopyridine Wako Pure Chemical Industries, Ltd 011-02775
Orion 5-star Plus pH meter Thermo Scientific
PrpHecT ROSS Micro Combination pH Electrode 8220BNWP Thermo Scientific
Axiovision, Version 4.6, Axio Observer Z1 Zeiss
ImageJ NIH, Bethesda, MD, USA
HRTEM H500 Hitachi
SU6600 VPSEM Hitachi
NB5000 Focused Ion and Electron Beam (FIB-SEM) system Hitachi 

References

  1. Aizenberg, J., et al. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science. 309 (5732), 275-278 (2005).
  2. de Nooijer, L. J., Toyofuku, T., Oguri, K., Nomaki, H., Kitazato, H. Intracellular pH distribution in foraminifera determined by the fluorescent probe HPTS. Limnol Oceanogr Methods. 6 (11), 610-618 (2008).
  3. de Nooijer, L. J., Langer, G., Nehrke, G., Bijma, J. Physiological controls on seawater uptake and calcification in the benthic foraminifer Ammonia tepida. Biogeosciences. 6 (11), 2669-2675 (2009).
  4. Smith, A. M., Riedi, M. A., Winter, D. J. Temperate reefs in a changing ocean: skeletal carbonate mineralogy of serpulids. Mar Biol. 160 (9), 1-14 (2013).
  5. Carpizo-Ituarte, E., Hadfield, M. Stimulation of metamorphosis in the polychaete Hydroides elegans Haswell (Serpulidae). Biol. Bull. 194 (1), 14 (1998).
  6. Bryan, P. J., Kreider, J. L., Qian, P. Y. Settlement of the serpulid polychaete Hydroides elegans (Haswell) on the arborescent bryozoan Bugula neritina (L.): evidence of a chemically mediated relationship. J Exp Mar Biol Ecol. 220, 171-190 (1998).
  7. Chan, V. B. S., et al. Evidence of compositional and ultrastructural shifts during the development of calcareous tubes in the biofouling tubeworm, Hydroides elegans. J. Struct. Biol. 189 (3), 230-237 (2015).
  8. Dickson, A. G., Goyet, C. . Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2. , (1994).
  9. Chan, V. B. S., et al. Direct deposition of crystalline aragonite in the controlled biomineralization of the calcareous tubeworm. Front Mar Sci. 2, 97 (2015).
  10. Bond, J., Varley, J. Use of flow cytometry and SNARF to calibrate and measure intracellular pH in NS0 cells. Cytometry A. 64, 43-50 (2005).
  11. Lloyd, G. E. Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques. Mineral Mag. 51, 3-19 (1987).
  12. Perez-Huerta, A., Dauphin, Y., Cuif, J. P., Cusack, M. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells. Micron. 42 (3), 246-251 (2011).
  13. Bandli, B. R., Gunter, M. E. Electron backscatter diffraction from unpolished particulate specimens: examples of particle identification and application to inhalable mineral particulate identification. Am. Mineral. 97, 1269-1273 (2012).
  14. Hayat, M. A. . Principles and techniques of electron microscopy: biological applications. , (2000).
  15. Wirth, R. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geo. 261, 217-229 (2009).
  16. Volkert, C. A., Minor, A. M. Focused ion beam microscopy and micromachining. MRS Bull. 32, 389-399 (2007).
  17. Kudo, M., et al. Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study. J. Struct. Biol. 169 (1), 1-5 (2009).
check_url/fr/55164?article_type=t&slug=characterization-calcification-events-using-live-optical-electron

Play Video

Citer Cet Article
Chan, V. B. S., Toyofuku, T., Wetzel, G., Saraf, L., Thiyagarajan, V., Mount, A. S. Characterization of Calcification Events Using Live Optical and Electron Microscopy Techniques in a Marine Tubeworm. J. Vis. Exp. (120), e55164, doi:10.3791/55164 (2017).

View Video