Summary

钙化事件的表征在海洋Tubeworm使用实时光学和电子显微镜技术

Published: February 28, 2017
doi:

Summary

We demonstrate the use of various microscopy methods that are useful in observing the calcification of a tubeworm, Hydroides elegans, as well as locating and characterizing the first calcified material. Live microscopy and electron microscopy are used together to provide functional and material information that are important in studying biomineralization.

Abstract

Characterizing the first event of biological production of calcium carbonate requires a combination of microscopy approaches. First, intracellular pH distribution and calcium ions can be observed using live microscopy over time. This allows identification of the life stage and the tissue with the feature of interest for further electron microscopy studies. Life stage and tissues of interest are typically higher in pH and Ca signals.

Here, using H. elegans, we present a protocol to characterize the presence of calcium carbonate structures in a biological specimen on the scanning electron microscope (SEM), using energy-dispersive X-ray spectroscopy (EDS) to visualize elemental composition, using electron backscatter diffraction (EBSD) to determine the presence of crystalline structures, and using transmission electron microscopy (TEM) to analyze the composition and structure of the material. In this protocol, a focused ion beam (FIB) is used to isolate samples with dimension suitable for TEM analysis. As FIB is a site specific technique, we demonstrate how information from the previous techniques can be used to identify the region of interest, where Ca signals are highest.

Introduction

生物矿化是一个复杂的一系列事件,其中桥接一套导致产生精美有序矿物质1的细胞活动。面临的挑战是表征两个动态细胞过程和使用的光学和电子显微镜方法的组合的复杂的矿物结构。细胞内pH的正视利于碳酸钙晶体的形成,因此,鉴定具有增加的pH的生命阶段揭示当钙化可能被发生2,3的时间。

从家庭的龙介虫科管虫是海洋中的4种常见钙化。这也是海洋研究一种流行的无脊椎动物的模式,尤其是在生物污染5,6。在这项研究中,钙化成矿车厢的过程中杜里NG生物矿化观察。变态的快速过程包括碳酸钙结构7,8的出现。

我们展示了如何pH值内部测量可以在tubeworm进行,以及如何生活阶段,相关的钙化组织可筛选。感兴趣的生命阶段被识别后,负责钙化的组织可被表征在使用电子显微镜的方法更高的分辨率。使用荧光显微镜,我们确定变质诱导后出现需要碳酸钙的时间。人生的一个类似的阶段,随后用SEM-EDS对可视化元素组成的分布,并采用两种不同的电子显微镜方法,尤其是SEM-EBSD和FIB-TEM分析了沉积矿物中。

Protocol

1.筛选生命阶段和实时成像利益组织培养根据先前报道的方法6,7,9海洋幼虫能力。孵育tubeworm幼虫每毫升密度5幼虫用10μMSNARF-凌晨1点通宵过滤的海水。用铝箔覆盖该容器,以防止光致漂白的荧光探针。 通过观察解剖显微镜的幼虫。主管tubeworm幼虫准备变态将在向前方向,而不是圆周运动游泳。 转移主管?…

Representative Results

以下是tubeworm变态过程中钙化过程的一些看法。 图1示出了套环区域附近的pH值下比变态后的其他组织高。 图2I显示了钙的均匀分布,这表明没有大的钙化活动已经开始tubeworm; 图2II表明已钙化对于较长时间的tubeworm,表明钙化已经超越的感兴趣的时间点; 图2III示出了具有所感兴趣的钙化阶段,其选择用于进一步分析,以了?…

Discussion

活光学成像是一种用于在多细胞生物体观测细胞事件的有用方法。这里,内部pH和钙离子的指标被用于测量在矿化站点离子的通量。在这些区域中,活性离子泵送需要提高pH和钙离子浓度,以使钙化2,3。当施加荧光分子研究的有机体,重要的是确保所用的浓度具有可忽略毒性,使生物体在生理相关的方式来执行。较低浓度的染色是毒性较低,通?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors would like to send a big thank you to Clemson Broadcast Productions, audio recording by J. Bright, Narration by A. D. McQuiston, Audio sweetening, K. Murphy, videography by G. Spake, Graphic arts by T. Messervy, Video editing by T. Messervy and E. Rodgers. Technical assistance and scientific advice was inspired by the advice of S. Kawada, S. Kubo, J. Hudson, T. Darroudi, D. Mulwee, H. Qian, Y. W. Lam, M. B. Johnstone, C. Campanati, A. C. Lane, and R. Dineshram. This study was funded by three GRF grants from the HKSAR-RGC (Grant Numbers: 705511P, 705112P, and 17304914).

Materials

Hexamethyldisilazane  Electron Microscopy Sciences 16700(EM)
Osmium Tetroxide 2% Aqueous Solution Electron Microscopy Sciences 19192
IBMX 3-Isobutyl-1-methylxanthine ThermoFisher Scientific PHZ1124
Nigericin, Free Acid ThermoFisher Scientific N7143-5MG
35-mm-diam dish, hole size 27 mm, Glass No.0, Non-coat ThermoFisher Scientific D110400
5-(and-6)-Carboxy SNARF-1, Acetoxymethyl Ester, Acetate ThermoFisher Scientific C-1271
BDH Potassium Chloride, ACS Grade VWR BDH0258-500G
Paraformaldehyde
reagent grade, crystalline
Sigma P6148
1 M Hydrochloric Acid for Volumetric Analysis Wako Pure Chemical Industries, Ltd 083-01095
0.05 M Sodium Hydroxide Solution for Volumetric Analysis Wako Pure Chemical Industries, Ltd 199-02185
Calcein Sigma C0875
FASW Iwaki Co. Ltd. Rei-sea Marine
Mixed Cellulose Ester Membranes; 47 mm dia, 0.45 µm ADVANTEC A045A047A
ethanol Wako Pure Chemical Industries, Ltd 051-00476
Artificial seawater for buffers by SOP06 of DOE (1994), cdiac.ornl.gov/ftp/cdiac74/sop06.pdf
Sodium Chloride Wako Pure Chemical Industries, Ltd 191-01665
Potassium Chloride Wako Pure Chemical Industries, Ltd 163-03545
Magnesium Chloride Hexahydrate Wako Pure Chemical Industries, Ltd 135-00165
Calcium Chloride Wako Pure Chemical Industries, Ltd 039-00475
Sodium Sulfate Wako Pure Chemical Industries, Ltd 197-03345
Hydrochloric Acid Wako Pure Chemical Industries, Ltd 089-08415
2-amino-2-hydroxymethyl-1,3-propanediol (tris) Wako Pure Chemical Industries, Ltd 207-06275
2-aminopyridine Wako Pure Chemical Industries, Ltd 011-02775
Orion 5-star Plus pH meter Thermo Scientific
PrpHecT ROSS Micro Combination pH Electrode 8220BNWP Thermo Scientific
Axiovision, Version 4.6, Axio Observer Z1 Zeiss
ImageJ NIH, Bethesda, MD, USA
HRTEM H500 Hitachi
SU6600 VPSEM Hitachi
NB5000 Focused Ion and Electron Beam (FIB-SEM) system Hitachi 

References

  1. Aizenberg, J., et al. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science. 309 (5732), 275-278 (2005).
  2. de Nooijer, L. J., Toyofuku, T., Oguri, K., Nomaki, H., Kitazato, H. Intracellular pH distribution in foraminifera determined by the fluorescent probe HPTS. Limnol Oceanogr Methods. 6 (11), 610-618 (2008).
  3. de Nooijer, L. J., Langer, G., Nehrke, G., Bijma, J. Physiological controls on seawater uptake and calcification in the benthic foraminifer Ammonia tepida. Biogeosciences. 6 (11), 2669-2675 (2009).
  4. Smith, A. M., Riedi, M. A., Winter, D. J. Temperate reefs in a changing ocean: skeletal carbonate mineralogy of serpulids. Mar Biol. 160 (9), 1-14 (2013).
  5. Carpizo-Ituarte, E., Hadfield, M. Stimulation of metamorphosis in the polychaete Hydroides elegans Haswell (Serpulidae). Biol. Bull. 194 (1), 14 (1998).
  6. Bryan, P. J., Kreider, J. L., Qian, P. Y. Settlement of the serpulid polychaete Hydroides elegans (Haswell) on the arborescent bryozoan Bugula neritina (L.): evidence of a chemically mediated relationship. J Exp Mar Biol Ecol. 220, 171-190 (1998).
  7. Chan, V. B. S., et al. Evidence of compositional and ultrastructural shifts during the development of calcareous tubes in the biofouling tubeworm, Hydroides elegans. J. Struct. Biol. 189 (3), 230-237 (2015).
  8. Dickson, A. G., Goyet, C. . Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2. , (1994).
  9. Chan, V. B. S., et al. Direct deposition of crystalline aragonite in the controlled biomineralization of the calcareous tubeworm. Front Mar Sci. 2, 97 (2015).
  10. Bond, J., Varley, J. Use of flow cytometry and SNARF to calibrate and measure intracellular pH in NS0 cells. Cytometry A. 64, 43-50 (2005).
  11. Lloyd, G. E. Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques. Mineral Mag. 51, 3-19 (1987).
  12. Perez-Huerta, A., Dauphin, Y., Cuif, J. P., Cusack, M. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells. Micron. 42 (3), 246-251 (2011).
  13. Bandli, B. R., Gunter, M. E. Electron backscatter diffraction from unpolished particulate specimens: examples of particle identification and application to inhalable mineral particulate identification. Am. Mineral. 97, 1269-1273 (2012).
  14. Hayat, M. A. . Principles and techniques of electron microscopy: biological applications. , (2000).
  15. Wirth, R. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geo. 261, 217-229 (2009).
  16. Volkert, C. A., Minor, A. M. Focused ion beam microscopy and micromachining. MRS Bull. 32, 389-399 (2007).
  17. Kudo, M., et al. Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study. J. Struct. Biol. 169 (1), 1-5 (2009).
check_url/fr/55164?article_type=t

Play Video

Citer Cet Article
Chan, V. B. S., Toyofuku, T., Wetzel, G., Saraf, L., Thiyagarajan, V., Mount, A. S. Characterization of Calcification Events Using Live Optical and Electron Microscopy Techniques in a Marine Tubeworm. J. Vis. Exp. (120), e55164, doi:10.3791/55164 (2017).

View Video