Summary

细胞周期变化的可视化和核测定心肌出生后

Published: February 24, 2017
doi:

Summary

To distinguish cell division from cell cycle variations in cardiomyocytes, we present protocols using two transgenic mouse lines: Myh6-H2B-mCh transgenic mice, for the unequivocal identification of cardiomyocyte nuclei, and CAG-eGFP-anillin mice, for distinguishing cell division from cell cycle variations.

Abstract

Cardiomyocytes are prone to variations of the cell cycle, such as endoreduplication (continuing rounds of DNA synthesis without karyokinesis and cytokinesis) and acytokinetic mitosis (karyokinesis but no cytokinesis). Such atypical cell cycle variations result in polyploid and multinucleated cells rather than in cell division. Therefore, to determine cardiac turnover and regeneration, it is of crucial importance to correctly identify cardiomyocyte nuclei, the number of nuclei per cell, and their cell cycle status. This is especially true for the use of nuclear markers for identifying cell cycle activity, such as thymidine analogues Ki-67, PCNA, or pHH3. Here, we present methods for recognizing cardiomyocytes and their nuclearity and for determining their cell cycle activity. We use two published transgenic systems: the Myh6-H2B-mCh transgenic mouse line, for the unequivocal identification of cardiomyocyte nuclei, and the CAG-eGFP-anillin mouse line, for distinguishing cell division from cell cycle variations. Combined together, these two systems ease the study of cardiac regeneration and plasticity.

Introduction

心肌细胞核和细胞周期状态的正确识别是对心肌的营业额和再生的决心至关重要。这是一种使用核标记物,如pHH3,Ki-67的,或胸苷类似物,用于识别细胞周期活动的情况尤其如此。如成年哺乳动物的心肌细胞的增殖能力是非常小的图1中 ,核阳性心肌细胞核的增殖标志物可以使在一个增殖试验的结果的一个关键差的误识别。此外,心肌细胞很容易在细胞周期的变化,如核内复制和acytokinetic有丝分裂,这导致多倍体和多核细胞,而不是在细胞分裂。为此,对常见的细胞周期标记物的抗体染色的解释不是在所有情况下定论。

在这里,我们提出了直forwa方法小鼠心肌细胞的RD承认和其核的明确的身份标识在产后和成年阶段的本土分离出的细胞和厚厚的组织切片的nuclearity。为此目的,与MYH6启动子(MYH6-H2B-MCH)的控制下,由人类组蛋白H2B和mCherry融合蛋白的特异性心肌表达的转基因小鼠品系使用2。杂交育种用的转基因增殖指示剂鼠标线这个鼠标线,其中一个的eGFP-anillin融合蛋白的表达是与CMV增强无处不鸡肌动蛋白启动子的控制下(CAG-EGFP-anillin),允许测定的细胞周期状态。支架蛋白anillin在细胞周期特异性表达的活性细胞3,和在细胞周期中其差的亚细胞定位允许活跟踪细胞周期进程用高分辨率的M-相EF“> 4,因此,双转基因小鼠可用于增殖心肌细胞和那些经历细胞周期的变化来区分。这证明在筛选用于体外增殖诱导物质特别有用。

Protocol

该协议涉及动物的所有程序均符合波恩大学的道德标准,并从2010年指令欧洲议会/ 63 / EU的用于科学目的的动物保护准则的规定。 1. 在产后心肌细胞周期活动的体外可视化产后心肌细胞分离实验前准备工作制备培养基(IMDM,1%青霉素/链霉素,1%非必需氨基酸,0.1%β巯基乙醇);介质1:加FCS至2%;介质2:添加FCS至20%。 涂层的96孔培养…

Representative Results

为了分析的siRNAs / miRNA的体外产后心肌细胞,双转基因MYH6-H2B-MCH / CAG-EGFP-anillin小鼠心肌细胞的细胞周期活动的影响被隔绝在3日龄(P3)和与转细胞周期活动诱导miR199 5,P27的siRNA,和siRNA Fzr1。相比于阴性对照( 图1A),miR199-( 图1B)和siRNA p27-( 图1C)的照片转染心肌细胞表现出细胞周期活性的诱导。在EGFP-anil…

Discussion

有一个争论的心肌细胞是否能够重新进入细胞周期和损伤后和组织稳态期间分割。对于心肌细胞的基本成交值已被赋予在范围为1%1和80%的7之间。还心脏损伤后,细胞周期活性的诱导和新的心肌细胞的产生已经报道在边界区,具有值0.0083%8和25之间- 40%7。这些差异可部分通过不同的实验方法进行说明,以确定心肌细胞核,…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We thank S. Grünberg (Bonn, Germany) and P. Freitag (Bonn, Germany) for their technical assistance.

Materials

10 cm petri dish Sarstedt 821472
100 µm cell strainer Becton Dickinson GmbH/Falcon 352360
2,3-Butanedione monoxime (BDM) Sigma-Aldrich B0753
G20x1 ½ injection cannula, Sterican Braun, Melsungen 4657519
20 gauge needle Becton Dickinson GmbH 301300
24-well plates Becton Dickinson GmbH/Falcon 353047
2-Methyl-butane Carl Roth GmbH + Co. KG 3927.1
37% formaldehyde solution AppliChem GmbH  A0936,1000
3-way stopcock B. Braun Medical Inc. 16494C
50 ml syringe B. Braun Medical Inc. 8728810F
70% ethanol Otto Fischar GmbH 27669
Alexa-Fluor-conjugated secondary antibody Jackson ImmunoResearch 115-605-205
Alpha-Aktinin EA-53, Mouse IgG Sigma-Aldrich, Steinheim A7811
CaCl Sigma-Aldrich C4901
Cell Culture Microplate, 96 Well, Half Area Greiner bio-one 675986
Collagenase B Roche 11088815001
confocal microscope Eclipse Ti-E Nikon
cryostat CM 3050S Leica
donkey serum Jackson Immuno Research, Suffolk, GB 017-000-121
Dulbecco's Phosphate Buffered Saline Sigma-Aldrich D8537
EDTA Sigma-Aldrich E4884
fetal calf serum PromoCell, Heidelberg
Formaldehyde solution (4%) PanReac AppliChem A3697
Gelatine from porcine skin, Type A Sigma-Aldrich, Steinheim G2500
glass coverslips VWR 631-0146
Glucose Sigma-Aldrich G7021
Heidelberger extension tube IMPROMEDIFORM GmbH MF 1833
Heparin-Natrium Ratiopharm 5394.02.00
HEPES Sigma-Aldrich H3375
HistoBond microscope slides Marienfeld 0810000
Hoechst 33342 (1mg/ml) Sigma Aldrich, Taufkirchen B2261
Insulin syringe Becton Dickinson GmbH 300334
Iscove’s ModifiedDulbecco’s Medium (IMDM) Gibco/Life Technologies, Darmstadt 21980-032
KCl Sigma-Aldrich P9333
Laminin Corning 354221
Laser Scanning Mikroskop Eclipse Ti Nikoninstruments, Düsseldorf
Lipofectamine RNAiMAX Invitrogen/Life Technologies, Darmstadt 13778075
Mouse IgG Cy5 (donkey) Jackson ImmunoResearch 715-175-151
MGCl Sigma-Aldrich M8266
microcentrifuge tube Sarstedt 72690
Mini shaker VWR 12620-940
mirVana miRNA mimic, hsa-miR199a-3p Ambion/Thermo Fischer Scientific 4464066
Biopsy Mold Sakura Finetek/ VWR 4565
M-slide 8-well ibiTreat ibidi 80826
NaCl Sigma-Aldrich S9888
NaOH Merck Millipore 567530
negative control(scrambled RNA) Ambion/Thermo Fischer Scientific AM4611
Neonatal Heart Dissociation Kit Miltenyi Biotech, Bergisch Gladbach 130-098-373
NIS Elements AR 4.12.01-4.30.02-64bit Nikoninstruments, Düsseldorf
Non essential amino acids, NEAA Gibco/Life Technologies, Darmstad 11140-035
Opti-MEM, Reduced Serum Medium Gibco 51985-026
P21-siRNA Ambion/Thermo Fischer Scientific 4390771
P27-siRNA Ambion/Thermo Fischer Scientific 4390771
Penicillin/Streptomycin Gibco/Life Technologies, Darmstadt 15140-122
Phosphate buffered saline (PBS) Sigma-Aldrich, Steinheim 14190-094
Polyvinyl alcohol mounting medium with DABCO®, antifading Sigma-Aldrich 10981
RNase A Qiagen 1007885
RNaseZap Invitrogen/Life Technologies, Darmstadt AM9780
sample containers Vitlab 80731
Serological pipette Greiner 607180
software NIS Elements Nikon
Sucrose Sigma-Aldrich S0389
Tissue-Tek O.C.T. Compound Sakura Finetek/ VWR 25608-930
ToPro3 iodide (642/661) Molecular probes/ThermoFisher Scientific T3605
Tris Sigma-Aldrich T1503
Triton X Fluka 93418
Triton X-100 Fluka 93418
Trypsin Sigma-Aldrich T1426
Wheat germ agglutinine (WGA) Fluorescein labeled Vector Laboratories VEC-FL-1021-5
α-actinin antibody Sigma-Aldrich A7811
β-Mercaptoethanol Sigma-Aldrich, Steinheim M3148

References

  1. Bergmann, O., et al. Evidence for cardiomyocyte renewal in humans. Science. 324 (5923), 98-102 (2009).
  2. Raulf, A., et al. Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status. Basic Res.Cardiol. 110 (3), 33 (2015).
  3. Field, C. M., Alberts, B. M. Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J.Cell Biol. 131 (1), 165-178 (1995).
  4. Hesse, M., et al. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat.Commun. 3, 1076 (2012).
  5. Eulalio, A., et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 492 (7429), 376-381 (2012).
  6. Di, S. V., Giacca, M., Capogrossi, M. C., Crescenzi, M., Martelli, F. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J.Biol.Chem. 286 (10), 8644-8654 (2011).
  7. Hosoda, T., et al. Clonality of mouse and human cardiomyogenesis in vivo. Proc.Natl.Acad.Sci.U.S.A. 106 (40), 17169-17174 (2009).
  8. Soonpaa, M. H., Field, L. J. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am.J.Physiol. 272 (1 Pt 2), H220-H226 (1997).
  9. Ang, K. L., et al. Limitations of conventional approaches to identify myocyte nuclei in histologic sections of the heart. Am.J.Physiol Cell Physiol. 298 (6), C1603-C1609 (2010).
  10. Engel, F. B., Schebesta, M., Keating, M. T. Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol. 41 (4), 601-612 (2006).
  11. Bergmann, O., et al. Dynamics of Cell Generation and Turnover in the Human Heart. Cell. 161 (7), 1566-1575 (2015).
check_url/fr/55204?article_type=t

Play Video

Citer Cet Article
Raulf, A., Voeltz, N., Korzus, D., Fleischmann, B. K., Hesse, M. Visualization of Cell Cycle Variations and Determination of Nucleation in Postnatal Cardiomyocytes. J. Vis. Exp. (120), e55204, doi:10.3791/55204 (2017).

View Video