Summary

三维声带振动的半喉设置研究

Published: November 25, 2017
doi:

Summary

本文介绍了一种用于制备用于促进声音褶皱振动多维观的半喉标本的协议, 目的是研究人类和非人类哺乳动物发声的各种生物物理方面。

Abstract

人类和大多数非人类哺乳动物的声音是通过声带的自我维持振荡在喉部产生的。直接视觉文献的声带振动是挑战, 特别是在非人类的哺乳动物。作为替代, 切除喉实验提供了机会, 研究声带振动在受控生理和物理条件。然而, 使用一个完整的喉只是提供了一个顶部视图的声音褶皱, 不包括关键部分的摆动结构的观察期间, 他们与空气动力学的力量的互动。这一限制可以克服, 利用半喉设置, 其中一半喉是 mid-sagittally 移除, 提供了一个优越的和横向的意见, 其余的声带在自我维持振荡。

在此, 给出了半喉结构的解剖学准备和在实验室工作台上安装的 step-by 步骤指南。发声的半喉准备的模范性的记录与高速视频数据捕获的两个同步相机 (优越和横向的意见), 显示三维声带运动和相应的时变接触面积。该出版物的半喉设置文件将有助于在实验研究中的应用和可靠的重复性, 为语音科学家提供了更好地理解声音生产的生物力学的潜力。

Introduction

声音通常是由振动喉组织 (主要是声带) 产生的, 它将由肺部提供的稳定气流转换成一系列气流脉冲。声波压力波形 (, 主要声音) 出现从这个序列的流动脉冲声学兴奋的声带过滤他们, 并由此产生的声音从口和 (在一定程度上) 从鼻子辐射1.所产生的声音的光谱组成很大程度上受声带振动质量的影响, 受喉生物力学和与气管气流的相互作用2。无论是在临床和研究的背景下, 文献和评价声带振动因此是最重要的兴趣时, 研究语音生产。

在人类中, 对喉的直接内窥镜调查在酣然的生产在体内是富有挑战性的, 并且它几乎不可能在非人的哺乳动物, 鉴于当前技术手段。因此, 为了保证仔细控制物理和/或生理实验的边界条件, 使用切除 larynges3,4在许多情况下是充分替代研究的在体内语音生成机制。

声音褶皱振动是一个复杂的三维现象5。传统的调查方法, 如喉内窥镜 (在体内) 或切除喉的准备工作通常只提供一个优越的观点振动声乐褶皱6, 他们不允许完整的三维分析声音折叠运动。特别是在高级视图中, 在振动周期的主要部分中, 声带的下部 (尾缘) 边缘是不可见的。这是由于下 (尾) 与声带的上级 (颅) 边缘之间的相位延迟, 这一现象通常在声带振荡5时出现。直接经验主义的证据为备份发现从数学和物理模型是缺乏的, 知识的几何和运动的更低的声带边缘7, 并且因而几何门下渠道8,9,10对于更好地理解喉气流、声带组织和产生的力和压力之间的相互作用至关重要,1112。声带振动的另一个方面是隐藏在传统的优越观点是垂直 (caudo 颅) 的接触之间的两个声音褶皱的深度。垂直接触深度与声带的垂向厚度有关, 这是歌唱中用于演唱 (“胸部” 与 “假声” 寄存器)1314的潜在指示器。

为了克服常规 (充分) 切除喉准备的缺点, 可以使用 so-called 半喉设置, 其中一半喉被删除, 从而促进评估的振动特性的剩余声带在三维度。令人惊讶的是, 自从在二十世纪六十年代15中引入此设置并在 1993年16中对概念进行了初步验证之后, 没有多少实验室用这种有希望的实验方法进行了实验17,18 ,19,20,21,22,23。对此的解释可能存在于建立一个可行的半喉准备的困难。虽然常规切除 (完整) 喉准备是很好的文件4, 没有这样的 in-depth 指令是目前尚未可用于创建一个半喉设置。因此, 本文的目的是提供一个教程, 建立一个可靠的可再生的半喉设置, 并辅以红鹿标本的实验结果。

一个半喉安装与 “常规” 切除喉设置共享许多功能, 如测量设备, 高速或其他成像技术, 以充分记录在声音产生的喉结构的振动, 或适当供应加热, 湿润的空气。这些一般的设置注意事项将在书的4和国家语音和语音中心的技术报告24中详细介绍。重申这些指示将超出本手稿的范围。在这里, 只有专门的指令, 生成一个半喉设置提出。

Protocol

本文分析的动物标本是按照捷克共和国奥洛穆茨 Palacky 大学的标准伦理要求进行处理的。它们来源于在森林中生活的红鹿, 在一个正常狩猎季节, 它们被捷克陆军森林局猎杀。 1. 半喉标本的制备 注意: 如4所示, 只应使用正确准备的标本。快速冷冻喉部25在切除和储存-80 ° c 后立即将组织退化和生物力学特性改变的可能性降…

Representative Results

如前一节所提到的, 半喉准备的插图及其在供气管上的安装, 分别在图 1和图 2中提供。 从两个摄像机角度来记录声带振动 气流诱导的半喉声带自我维持振荡从顶部和侧面记录了两个同步高速视频 (HSV) 摄像头在6000帧/秒运行, …

Discussion

半喉预备具有 “常规” (完全) 切除喉设置的优点: 在这种实验方法中, 物理和生理边界条件和参数 (如门下压力或声带伸长) 可以控制得相当好。hemilarynx 的行为与一个完全的横向对称的全喉是同源的, 除了某些参数的大小 (e. g, 空气流速, 声压) 减少了大约 50%, 但仍然是在实际范围为16。完全切除喉的方法的主要缺点, i. e., 由于在半喉设置中克服了声带表面的不可见性 (ca…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作由奥地利科学院 (星期三) 的一个分开的津贴支持, 捷克共和国项目的技术代办处没有。TA04010877 (星期三、VH 和 JGS) 和捷克科学基金会 (GACR) 项目没有 GA16-01246S (JGS)。我们感谢 w 泰康的建议, 他使用假牙固定霜, 和 Ing。p. Liska 从捷克陆军森林服务处获得帮助, 获得了 larynges 的切除鹿。

Materials

Surgical blades Surgeon Jai Surgical Ltd., New Delhi, India
Saw Hand saw (Lux, 150 mm length) Lux, Wermelskirchen, Germany
Thermometer Testo 922 Testo Ltd., Hampshire, UK K-type Probe, Operating temperature -20 to +50 °C
Autoclave bags Autoclave bags vwr.com, VWR International s.r.o., Stribrna Skalice, Czech republic
Conductive glass plates Custom made UPOL – Joint laboratory of Optics
Trida 17. listopadu 50A, 772 07 Olomouc, the Czech Rep.
Fixative cream Denture fixative cream Blend-a-dent Natural
Prongs and fastening system Customized Kanya Al eloxed profiles Distributor: VISIMPEX a.s.. Seifertova 33, 750 02 Prerov, the Czech Rep.;  Combination of Kanya RVS and PVS fastening systems (http://www.kanya.cz/) + custom made prongs
Mounting tube Custom made UPOL – Joint laboratory of Optics,
Trida 17. listopadu 50A, 772 07 Olomouc, the Czech Rep.
LED Light Verbatim 52204 LED Lamp Mitsubishi Chemical Holdings Corporation, Tokyo, Japan
Camera Canon EOS1100D Canon Inc. 18-55 mm lens
Airpump Resun LP100 Resun
Strobe light ELMED Helio-Strob micro2 ELMED Dr. Ing. Mense GmbH, Heiligenhaus, Germany
Humidifier Custom made Voice Research Lab, Dept. Biophysics, Faculty of Sciences, Palacky University Olomouc, Czech republic
Subglottic tract Custom made adjustable subglottic tract Voice Research Lab, Dept. Biophysics, Faculty of Sciences, Palacky University Olomouc, Czech republic Hampala, V., Svec, Jan, Schovanek, P., and Mandat, D. Uzitny vzor c. 25585: Model subglotickeho traktu. [Utility model no. 25585: Model of subglottal tract] (In Czech) Soukup, P. 2013-27834(CZ 25505 U1), 1-7. 24-6-2013. Praha, Urad prumysloveho vlastnictvi

References

  1. Story, B. H. An overview of the physiology, physics and modeling of the sound source for vowels. Acoust Sci Technol. 23 (4), 195-206 (2002).
  2. Titze, I. R. . Principles of voice production (second printing). , (2000).
  3. Cooper, D. S., Cummings, C. W., Fredrickson, J. M., Harker, L. A., Schuller, D. E., Krause, C. J. Ch. 95. Otolaryngology – head and neck surgery. 3, 1728-1737 (1986).
  4. Titze, I. R., Titze, I. R. . The myoelastic aerodynamic theory of phonation. , 1-62 (2006).
  5. Baer, T. . Investigation of phonation using excised larynxes (Doctoral dissertation). , (1975).
  6. Bless, D. M., Patel, R. R., Connor, N., Fried, M. P., Ferlito, A. Ch. 11. The Larynx. I, 181-210 (2009).
  7. Berke, G. S., et al. Laryngeal modeling: theoretical, in vitro, in vivo. Laryngoscope. 97, 871-881 (1987).
  8. Scherer, R. C., Titze, I. R., Curtis, J. F. Pressure-flow relationships in two models of the larynx having rectangular glottal shapes. J Acoust Soc Am. 73 (2), 668-676 (1983).
  9. Sidlof, P., et al. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production. J Biomech. 41 (5), 985-995 (2008).
  10. Scherer, R. C., Torkaman, S., Kuehn, D. P., Afjeh, A. A. Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape. J Acoust Soc Am. 128 (2), 828-838 (2010).
  11. Titze, I. R. The physics of small-amplitude oscillation of the vocal folds. J Acoust Soc Am. 83 (4), 1536-1552 (1988).
  12. Horacek, J., Svec, J. G., Paidoussis, M. P. Ch. 2. , 1043-1054 (2002).
  13. Vilkman, E., Alku, P., Laukkanen, A. M. Vocal-fold collision mass as a differentiator between registers in the low-pitch range. J Voice. 9 (1), 66-73 (1995).
  14. Herbst, C. T., Svec, J. G. Adjustment of glottal configurations in singing. J Singing. 70 (3), 301-308 (2014).
  15. Hiroto, I. . Vibration of vocal cords: an ultra high-speed cinematographic study(Film). , (1968).
  16. Jiang, J. J., Titze, I. R. A methodological study of hemilaryngeal phonation. Laryngoscope. 103 (8), 872-882 (1993).
  17. Scherer, R. C., Druker, D. G., Titze, I. R., Fujimura, O. . Vocal physiology: voice production, mechanisms and functions. , 279-291 (1988).
  18. Jiang, J. J., Titze, I. R. Measurement of vocal fold intraglottal pressure and impact stress. J Voice. 8 (2), 132-144 (1994).
  19. Alipour, F., Scherer, R. C. Dynamic glottal pressures in an excised hemilarynx model. J Voice. 14 (4), 443-454 (2000).
  20. Berry, D. A., Montequin, D. W., Tayama, N. High-speed digital imaging of the medial surface of the vocal folds. J Acoust Soc Am. 110 (5 Pt 1), 2539-2547 (2001).
  21. Döllinger, M., Tayama, N., Berry, D. A. Empirical eigenfunctions and medial surface dynamics of a human vocal fold. Methods Inf Med. 44 (3), 384-391 (2005).
  22. Döllinger, M., Berry, D. A., Berke, G. S. Medial surface dynamics of an in vivo canine vocal fold during phonation. J Acoust Soc Am. 117 (5), 3174-3183 (2005).
  23. Döllinger, M., Berry, D. A., Kniesburges, S. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments. J Acoust Soc Am. 139 (5), 2372-2385 (2016).
  24. Durham, P. L., Scherer, R. C., Druker, D. G., Titze, I. R. . Development of excised larynx procedures for studying mechanisms of phonation. Technical report. , (1987).
  25. Chan, R. W., Titze, I. R. Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues. Ann Biomed Eng. 31 (4), 482-491 (2003).
  26. Berg van den, J. W., Tan, T. S. Results of experiments with human larynxes. Practica Oto-Rhino-Laryngologica. 21, 425-450 (1959).
  27. Hampala, V., Garcia, M., Svec, J. G., Scherer, R. C., Herbst, C. T. Relationship between the electroglottographic signal and vocal fold contact area. J Voice. 30 (2), 161-171 (2016).
  28. Herbst, C. T., et al. Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings. J Exp Biol. 217 (6), 955-963 (2014).
  29. Zemlin, W. R. . Speech and hearing science: Anatomy & physiology. , (1988).
  30. Lohscheller, J., Toy, H., Rosanowski, F., Eysholdt, U., Döllinger, M. Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos. Med. Image Anal. 11 (4), 400-413 (2007).
  31. Wittenberg, T., Moser, M., Tigges, M., Eysholdt, U. Recording, processing, and analysis of digital high-speed sequences in glottography. Mach Vis Appl. 8 (6), 399-404 (1995).
  32. Larsson, H., Hertegard, S., Lindestad, P. A., Hammarberg, B. Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report. Laryngoscope. 110 (12), 2117-2122 (2000).
  33. Wittenberg, T., Tigges, M., Mergell, P., Eysholdt, U. Functional imaging of vocal fold vibration: digital multislice high-speed kymography. J Voice. 14 (3), 422-442 (2000).
  34. Deliyski, D., Petrushev, P., Schade, G., Müller, F., Wittenberg, T., Hess, M. . AQL 2003 Hamburg: Proceeding Papers for the Conference Advances in Quantitative Laryngology, Voice and Speech Research. (CD ROM). , 1-16 (2003).
  35. Svec, J. G., Schutte, H. K. Kymographic imaging of laryngeal vibrations. Curr Opin Otolaryngol Head Neck Surg. 20 (6), 458-465 (2012).
  36. Doellinger, M., Berry, D. A. Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation. J Voice. 20 (3), 401-413 (2006).
  37. Kusuyama, T., Fukuda, H., Shiotani, A., Nakagawa, H., Kanzaki, J. Analysis of vocal fold vibration by x-ray stroboscopy with multiple markers. Otolaryngol Head Neck Surg. 124 (3), 317-322 (2001).
  38. Fabre, P. Un procédé électrique percuntané d’inscription de l’accolement glottique au cours de la phonation: glottographie de haute fréquence; premiers résultats [A non-invasive electric method for measuring glottal closure during phonation: High frequency glottography: first results]. Bull. Acad. Nat. Med. 141, 66-69 (1957).
  39. Baken, R. J. Electroglottography. J Voice. 6 (2), 98-110 (1992).
  40. Baer, T., Stevens, K. N., Hirano, M. . Vocal Fold Physiology. , 119-133 (1981).
  41. Pelorson, X., Hirschberg, A., van Hassel, R. R., Wijnands, A. P. J., Auregan, Y. Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model. J Acoust Soc Am. 96 (6), 3416-3431 (1994).
  42. Alipour, F., Scherer, R. C. Flow separation in a computational oscillating vocal fold model. J Acoust Soc Am. 116 (3), 1710-1719 (2004).
  43. Zhang, Z. Influence of flow separation location on phonation onset. J Acoust Soc Am. 124 (3), 1689-1694 (2008).
  44. Kaburagi, T., Tanabe, Y. Low-dimensional models of the glottal flow incorporating viscous-inviscid interaction. J Acoust Soc Am. 125 (1), 391-404 (2009).
  45. Sidlof, P., Doaré, O., Cadot, O., Chaigne, A. Measurement of flow separation in a human vocal folds model. Exp Fluids. 51 (1), 123-136 (2011).
  46. Smith, S. L., Thomson, S. L. Effect of inferior surface angle on the self-oscillation of a computational vocal fold model. J Acoust Soc Am. 131 (5), 4062-4075 (2012).
  47. Khosla, S., Oren, L., Ying, J., Gutmark, E. Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges. Laryngoscope. 124, S1-S13 (2014).
  48. Brücker, C., Kirmse, C., Triep, M. Feedback of the glottal jet flow with supraglottal wall oscillations. Acta Acustica United With Acustica. 102 (2), 240-243 (2016).
  49. Herbst, C. T., Fitch, W. T., Lohscheller, J., Svec, J. G., Deliyski, D. D. . AQL 2013, Proceedings of the 10th International Conference on Advances in Quantitative Laryngology, Voice and Speech Research. , 75-76 (2013).
  50. Berke, G. S., Gerratt, B. R. Laryngeal biomechanics: an overview of mucosal wave mechanics. J Voice. 7 (2), 123-128 (1993).
  51. Boessenecker, A., Berry, D. A., Lohscheller, J., Eysholdt, U., Doellinger, M. Mucosal wave properties of a human vocal fold. Acta Acustica United With Acustica. 93 (5), 815-823 (2007).
  52. Hirano, M. . Clinical examination of voice. 5, (1981).
  53. Jing, B., Tang, S., Wu, L., Wang, S., Wan, M. Visualizing the Vibration of Laryngeal Tissue during Phonation Using Ultrafast Plane Wave Ultrasonography. Ultrasound in Med BIol. 42 (12), 2812-2825 (2016).
  54. Herbst, C. T., Suthers, R. A., Fitch, W. T., Fay, R. R., Popper, A. N. Ch. 6. Vertebrate Sound Production and Acoustic Communication. , 159-189 (2016).
check_url/fr/55303?article_type=t

Play Video

Citer Cet Article
Herbst, C. T., Hampala, V., Garcia, M., Hofer, R., Svec, J. G. Hemi-laryngeal Setup for Studying Vocal Fold Vibration in Three Dimensions. J. Vis. Exp. (129), e55303, doi:10.3791/55303 (2017).

View Video