Summary

La trasmissione di segnali multipli attraverso una fibra ottica Utilizzando Wavefront Shaping

Published: March 20, 2017
doi:

Summary

We demonstrate the transmission of multiple independent signals through a multimode fiber using wavefront shaping employing a single spatial light modulator. By modulating the wavefront for each signal individually, spatially separated foci are transmitted. Potential applications are multiplexed data transfer in communications engineering and endoscopic light delivery in biophotonics.

Abstract

La trasmissione di più segnali ottici indipendenti attraverso una fibra multimodale viene eseguita mediante formatura fronte d'onda al fine di compensare la distorsione della luce durante la propagazione all'interno della fibra. La nostra metodologia si basa su digitale coniugazione di fase ottica utilizzando solo un singolo modulatore spaziale di luce, in cui il fronte d'onda ottica è modulata individualmente in diverse regioni del modulatore, una regione al segnale luminoso. approcci coniugazione di fase ottica digitali sono considerati più veloce di altri wavefront modellatura approcci, dove (per esempio) viene eseguita una determinazione completa del comportamento di propagazione dell'onda della fibra. Al contrario, il metodo presentato è tempo efficiente poiché richiede soltanto una calibrazione per ogni segnale luminoso. Il metodo proposto è potenzialmente appropriato per spaziale multiplexing divisione in Ingegneria delle telecomunicazioni. Ulteriori campi di applicazione sono la consegna luce endoscopica in biofotonica, in particolare in optogenetics, dove le cellule singole in tessuto biologico devono essere selettivamente illuminati con alta risoluzione spaziale e temporale.

Introduction

La trasmissione di più segnali di luce attraverso una fibra multimodale (MMF) è evidente nelle comunicazioni di ingegneria 1 e 2 biofotonica. In Ingegneria delle telecomunicazioni, spazio-division multiplexing (SDM) si crede di essere una soluzione praticabile al fine di migliorare la capacità di trasmissione delle fibre ottiche per le future applicazioni di trasferimento dati che beneficiano di un maggiore utilizzo dello spazio limitato, rispetto a più fibre monomodali 3. In biofotonica, campioni biologici sono manipolati trasmettendo la luce attraverso un endoscopio MMF 4. Ad esempio, il controllo ottico indipendente dei singoli neuroni utilizzando endoscopi MMF è di interesse per optogenetics per studiare reti neuronali nel cervello 5. Tuttavia, la luce proiettata sulla sfaccettatura di ingresso MMF è soggetto a distorsione dovuta alla modalità di miscelazione e dispersione durante la propagazione al output aspetto del MMF. Come risultato, la propagazione della luce viene alterata, che rende difficile la trasmissione del segnale.

Wavefront metodi di formatura 6, 7 sono applicati in dispersione media utilizzando modulatori spaziali di luce (SLM) e consentire la compensazione per la distorsione a causa di dispersione durante la propagazione della luce 8. Ci sono approcci iterativi che ottimizzano l'uscita utilizzando un feedback ottico 9. Questi approcci sono piuttosto tempo a causa della necessità per numerose iterazioni e l'alto grado di libertà, corrispondente ad un gran numero di elementi modulatori. Un altro approccio è quello di determinare completamente i distorsione ai MMF descritto dal suo matrice di trasmissione 10. Se il numero di modalità da trasmettere è grande, questo sarà tempo pure. In contrasto, digitale coniugazione di fase ottica (DOPC) è consideratoveloce e vantaggioso qui, dal momento che solo pochi punti focali devono essere generata nel sfaccettatura uscita del MMF. Approcci coniugazione di fase sono stati dimostrati per focalizzare o immagini attraverso tessuto biologico 12, 13, 14.

Finora, DOPC stato impiegato per un singolo segnale volta solo 15, 16, ed è stato applicato per la trasmissione della luce attraverso un MMF 17. Un approccio DOPC per molteplici segnali indipendenti non è stato realizzato. Abbiamo sviluppato un metodo DOPC migliorata fornendo la trasmissione indipendente di più segnali luminosi utilizzando wavefront individuale sagomatura per ciascun segnale impiegando un singolo di sola fase SLM 18. A questo scopo, il SLM è segmentata in regioni, uno per ogni segnale da trasmettere. L'apparato sperimentale proposto è mostrata in figura 1, Dove una calibrazione viene eseguita in a) prima della trasmissione effettiva accade in b).

Figura 1
Figura 1: configurazione sperimentale. BS = divisore di fascio, CCD = dispositivo ad accoppiamento di carica, OM = modulatore ottico, CMOS = Complementary Metal-Oxide Semiconductor, HWP = metà piatto dell'onda, L = lente, LP = polarizzatore lineare, MMF = fibra multimodale, obiettivo OBJ = microscopio, PBS = polarizzazione divisore di fascio, SLM = modulatore spaziale di luce (fase unica) – solo travi rilevanti per (a) la calibrazione e (b) la trasmissione sono raffigurati cliccate qui per vedere una versione più grande di questa figura.

Protocol

1. Montaggio del setup sperimentale Preparazione della parte prossimale Posizionare e fissare il laser che emette un fascio di luce collimato – o utilizzare un laser accoppiato in fibra ottica con collimazione alla sfaccettatura all'uscita della fibra. Mettere il divisore di fascio polarizzante (PBS) per dividere il raggio laser in riferimento e fascio oggetto. Ruotare l'orientamento delle piastre semionda (HWP) ruotando il HWP nella sua rotazione montare finché l&…

Representative Results

Segnali di uscita Tipici a lato distale della fibra 2 m di lunghezza sono descritte nella Figura 2. Si noti che il punto focale desiderata (picco) è accompagnato da un speckle indesiderato (background), che è dovuto all'imperfezione della DOPC come questione di principio. Il corrispondente rapporto picco-a-fondo (PBR) è pari a 53 (solo il segnale 1 è 'on'), 36 (solo segnale 2 è 'on') e 20 (entrambi i segnali 1 e 2 sono 'on') qui, ri…

Discussion

Il montaggio del setup sperimentale (passaggio 1 nel protocollo) richiede un allineamento accurato dei componenti ottici rispetto all'altro. L'aspetto più importante è l'incidenza rettangolare delle travi di riferimento e la SLM, al fine di garantire un elevato PBR.

Al fine di migliorare la configurazione a più di due segnali trasmessi, separatori di fasci aggiuntivi potrebbero essere utilizzati. In alternativa, una implementazione a base di fibre sarebbe più compatta e robus…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The financial support by DFG (German research foundation, project CZ 55/30-1) for parts of this work is gratefully acknowledged.

Materials

spatial light modulator Holoeye PLUTO‐VIS‐016
CMOS camera Mikrotron MC4082
diode‐pumped solid state laser Laser Quantum torus 532
CCD camera IDS U3‐3482LE‐M CMOS camera; suitable as well
lens 1 Qioptiq G063204000
lens 2 Qioptiq G063203000
lens 3 Thorlabs AC508‐180‐A‐ML
multimode fiber Thorlabs M14L02
beam splitters Thorlabs BS013 9x
polarizing beam splitters Thorlabs PBS251
mirrors Thorlabs PF10‐03‐P01 5x
microscope objectives Thorlabs RMS20X 2x
half wave plates Thorlabs WPH10M‐532 2x
linear polarizer Thorlabs LPVISB050‐MP2
optical modulators Thorlabs MC2000B‐EC 2x
linear and rotation stage for CMOS camera Thorlabs XYR1/M
fiber connector Thorlabs S120‐SMA 2x
reducing ring for microscope objectives Qioptiq G061621000 2x
xy adjustment for objective adapters Qioptiq G061025000 2x
z translation mount for fiber adapter Thorlabs SM1Z 2x
rods for fiber alignment to objectives Qioptiq G061210000 8x
mounts for lenses 1 and 2 plus two phantom mounts Qioptiq G061047000 4x
rail carriers for objective and lens mounts Qioptiq G061372000 6x
rail for rail carriers Qioptiq G061359000 2x
adapter for CCD camera to 1 post in-house
adapter for laser to 4 posts in-house
mount for lens 3 Thorlabs LMR2/M
mounts for half wave plates Thorlabs RSP1D/M 2
mounts for mirrors Thorlabs KM100 5x
mount for linear polarizer Thorlabs RSP05/M
mounts for beam splitters and SLM Thorlabs KM100PM/M 11x
clamping arms for beam splitters and SLM Thorlabs PM4/M 11x
posts for mounts, rail carriers and adapters Thorlabs TR75/M 29x
holders for posts Thorlabs PH50/M 29x
pedestals for holders Thorlabs BE1/M 29x
clamping forks for pedestals Thorlabs CF125 29x

References

  1. Richardson, D. J., Fini, J. M., Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics. 7 (5), 354-362 (2013).
  2. Kreysing, M., et al. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells. Nat. Commun. 5 (5481), 1-6 (2014).
  3. Winzer, P. J. Scaling optical fiber networks: Challenges and solutions. Opt. Photonics News. 26 (3), 28-35 (2015).
  4. Cižmár, T., Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express. 19 (20), 18871-18884 (2011).
  5. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8 (9), 1263-1268 (2005).
  6. Philipp, K., et al. Volumetric HiLo microscopy employing an electrically tunable lens. Opt. Express. 24 (13), 15029-15041 (2016).
  7. Büttner, L., Leithold, C., Czarske, J. Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics. Opt. Express. 21 (25), 30653-30663 (2013).
  8. Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express. 23 (9), 12189-12206 (2015).
  9. Mahalati, R. N., Askarov, D., Wilde, J. P., Kahn, J. M. Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling. Opt. Express. 20 (13), 14321-14337 (2012).
  10. Caravaca-Aguirre, A. M., Niv, E., Conkey, D. B., Piestun, R. Real-time resilient focusing through a bending multimode fiber. Opt. Express. 21 (10), 12881-12887 (2013).
  11. Cižmár, T., Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012).
  12. Yaqoob, Z., Psaltis, D., Feld, M. S., Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics. 2 (2), 110-115 (2008).
  13. Ma, C., Xu, X., Liu, Y., Wang, L. V. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nat. Photonics. 8 (12), 931-936 (2014).
  14. Lee, K., Lee, J., Park, J. H., Park, J. H., Park, Y. One-wave optical phase conjugation mirror by actively coupling arbitrary light fields into a single-mode reflector. Phys. Rev. Lett. 115 (15), 153902 (2015).
  15. Cui, M., Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express. 18 (4), 3444-3455 (2010).
  16. Hillman, T. R., et al. Digital optical phase conjugation for delivering two-dimensional images through turbid media. Sci. Rep. 3, (2013).
  17. Papadopoulos, I. N., Farahi, S., Moser, C., Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express. 20 (10), 10583-10590 (2012).
  18. Czarske, J. W., Haufe, D., Koukourakis, N., Büttner, L. Transmission of independent signals through a multimode fiber using digital optical phase conjugation. Opt. Express. 24 (13), 15128-15136 (2016).
  19. Kim, M. K. Principles and techniques of digital holographic microscopy. SPIE Rev. 1 (1), 01800501-01800550 (2010).
  20. Gu, R. Y., Mahalati, R. N., Kahn, J. M. Design of flexible multi-mode fiber endoscope. Opt. Express. 23 (21), 26905-26918 (2015).
  21. Katz, O., Small, E., Bromberg, Y., Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nat. Photonics. 5 (6), 372-377 (2011).
check_url/fr/55407?article_type=t

Play Video

Citer Cet Article
Haufe, D., Koukourakis, N., Büttner, L., Czarske, J. W. Transmission of Multiple Signals through an Optical Fiber Using Wavefront Shaping. J. Vis. Exp. (121), e55407, doi:10.3791/55407 (2017).

View Video