Summary

功能磁共振成像映射与辅音和解调间隔的声音生成相关的脑活动

Published: May 23, 2017
doi:

Summary

聆听辅音和不和谐间隔的神经相关性已得到广泛的研究,但是与辅音和不和谐音间隔的产生相关的神经机制则不甚了解。在这篇文章中,行为检测和功能磁共振成像与区间识别和唱歌任务结合起来来描述这些机制。

Abstract

协调和不和谐感知的神经相关性得到了广泛的研究,而不是辅助和不和谐生产的神经相关性。最直截了当的音乐制作方式是唱歌,但是从成像的角度来看,它比听力有更多的挑战,因为它涉及到运动活动。音乐间隔的精确唱歌需要听觉反馈处理和声控马达控制之间的整合,以便正确地产生每个音符。该方案提供了一种允许监测与声母和不和谐间隔的声音产生相关联的神经激活的方法。四个音乐间隔,两个辅音和两个不和谐被用作刺激,用于听觉辨别测试和涉及首先听和然后再现给定间隔的任务。参加者,所有在音乐学院的女声学生,使用功能磁性研究演唱任务期间的演奏成像(fMRI),听力任务作为控制条件。以这种方式,观察到运动和听觉系统的活动,并且还获得了在歌唱任务期间的声音准确度的量度。因此,该协议还可用于跟踪与唱歌不同类型的间隔相关联的激活或更准确地唱出所需的音符。结果表明,唱歌不和谐间隔需要更多的神经机制的参与,负责来自听觉和感觉运动系统的外部反馈的整合,而不是唱歌辅音间隔。

Introduction

音乐会的某些组合通常被认为是辅音,并且它们通常与愉悦的感觉相关联。其他组合通常被称为不和谐,并且与不愉快或未解决的感觉相关1 。尽管假设文化和训练在辅音2的感觉中发挥了一定的作用,但似乎很明智,最近表明,辅音和不和谐间隔和和弦的感觉差异可能不如以前认为的音乐文化更少, 3可能甚至源于简单的生物基础4,5,6 。为了防止对术语协调的含糊的理解,Terhardt 7引入了感觉协调的概念,而不是音乐语境中的协调例如,和谐可能会很好地影响对给定和弦或间隔的响应。在本协议中,只有孤立的两音符间隔被精确地用于单独与感觉协调相关的激活,而没有来自上下文相关处理的干扰8

通过纯粹的物理手段来表征谐音的尝试开始于亥姆霍兹9 ,他将感觉到的与不协调的和弦相关的粗糙度归因于相邻频率分量之间的跳动。然而,最近,已经表明,感觉协调不仅与缺乏粗糙度有关,而且与谐波性有关,也就是说给定音调或和弦的部分与未听到的音调的对准低频10,11 。行为研究证实主观协调确实受到pu的影响依赖物理参数,如频率距离12,13 但是更广泛的研究结论性地证明,物理现象不能仅仅解释感觉到的和谐与不和谐之间的差异14,15,16,17。然而,所有这些研究在收听各种间隔或和弦时都会报告这些差异。使用正电子发射断层扫描(PET)和功能磁共振成像(fMRI)的各种研究已经显示,在听到辅音或不和谐间隔和和弦8,18,19,20时,皮质区域变得活跃的显着差异。本研究的目的是探讨差异在大脑活动中产生而不是听,辅音和不和谐的间隔。

在音乐制作过程中,感官运动控制的研究通常涉及使用乐器,并且经常需要制造专门为其在神经成像21期间使用而修改的乐器。然而,唱歌似乎从一开始就提供了一个适当的机制来分析音乐制作过程中的感官运动过程,因为乐器是人类的声音本身,声乐器不需要任何修改以适应成像22 。虽然与歌唱方面相关的神经机制,如音调控制23 ,声乐模仿24 ,训练诱导的适应变化25以及外部反馈的整合25 <s上课=“外部参照”> 26,27,28,29,已经是过去二十年的一些研究的主题,歌唱辅音和不和谐间隔的神经相关性最近才被描述30 。为此目的,本文介绍了一种旨在确定参与者对辅音和不和谐间隔的充分认识的行为测试。接下来是对参与者进行功能磁共振成像的研究,演唱了各种辅音和不和谐的间隔。 fMRI协议相对简单,但与所有MRI研究一样,必须非常小心正确设置实验。在这种情况下,特别重要的是在唱歌任务中尽可能减少头部,嘴巴和嘴唇的运动,使与身体上的歌唱行为直接相关的效果的识别更直接。这种方法可能用于通过唱歌来调整涉及音乐制作的各种活动的神经机制。

Protocol

该协议已经被医院Infantil deMéxico“FedericoGómez”的研究,伦理和安全委员会批准。 行为预测执行标准的纯音听力测试以确认所有预期参与者具有正常听力(在-8,000Hz的八度音频上为20dB听力水平(HL))。使用爱丁堡手持库存31确保所有参与者都是右撇子。 间隔序列的生成。 使用声音编辑程序生成跨越两个八度的纯音,G4-G6。 …

Representative Results

我们实验中的所有11名参与者都是温室一级的女性声乐学生,他们在间隔识别任务中执行得很好,供选择进行扫描。间隔识别任务的成功率为65.72±21.67%,如预期的那样低于识别不谐音和辅音间隔的成功率,为74.82±14.15%。 为了验证研究的基本设计,我们希望在已知构成“歌唱网络”的地区歌唱中确定神经活动,如以前的…

Discussion

这项工作描述了一种协议,其中使用歌唱作为在辅音和不和谐间隔的生产期间研究脑活动的手段。尽管唱歌提供了用于制作音乐间隔22的最简单的方法,但它不允许制作和弦。然而,虽然辅音概念的大多数物理表征在某种程度上依赖于同时音符的叠加,但一些研究表明,用对应于辅音或不和谐和弦的音符构成的间隔仍被认为是辅音或不和谐,分别为4,6,15,41,42。

<p class="jove_conten…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者承认财务支持秘书长萨卢德·墨西哥(HIM / 2011/058 SSA。1009),CONACYT(SALUD-2012-01-182160)和DGAPA UNAM(PAPIIT IN109214)的研究。

Materials

Achieva 1.5-T magnetic resonance scanner Philips Release 6.4
Audacity Open source 2.0.5
Audio interface  Tascam US-144MKII 
Audiometer Brüel & Kjaer Type 1800
E-Prime Professional Psychology Software Tools, Inc. 2.0.0.74
Matlab Mathworks R2014A
MRI-Compatible Insert Earphones Sensimetrics S14
Praat Open source 5.4.12
Pro audio condenser microphone Shure SM93
SPSS Statistics IBM 20
Statistical Parametric Mapping Wellcome Trust Centre for Neuroimaging 8

References

  1. Burns, E., Deutsch, D. . Intervals, scales, and tuning. The psychology of music. , 215-264 (1999).
  2. Lundin, R. W. Toward a cultural theory of consonance. J. Psychol. 23, 45-49 (1947).
  3. Fritz, T., Jentschke, S., et al. Universal recognition of three basic emotions in music. Curr. Biol. 19, 573-576 (2009).
  4. Schellenberg, E. G., Trehub, S. E. Frequency ratios and the discrimination of pure tone sequences. Percept. Psychophys. 56, 472-478 (1994).
  5. Trainor, L. J., Heinmiller, B. M. The development of evaluative responses to music. Infant Behav. Dev. 21 (1), 77-88 (1998).
  6. Zentner, M. R., Kagan, J. Infants’ perception of consonance and dissonance in music. Infant Behav. Dev. 21 (1), 483-492 (1998).
  7. Terhardt, E. Pitch, consonance, and harmony. J. Acoust. Soc. America. 55, 1061 (1974).
  8. Minati, L., et al. Functional MRI/event-related potential study of sensory consonance and dissonance in musicians and nonmusicians. Neuroreport. 20, 87-92 (2009).
  9. Helmholtz, H. L. F. . On the sensations of tone. , (1954).
  10. McDermott, J. H., Lehr, A. J., Oxenham, A. J. Individual differences reveal the basis of consonance. Curr. Biol. 20, 1035-1041 (2010).
  11. Cousineau, M., McDermott, J. H., Peretz, I. The basis of musical consonance as revealed by congenital amusia. Proc. Natl. Acad. Sci. USA. 109, 19858-19863 (2012).
  12. Plomp, R., Levelt, W. J. M. Tonal Consonance and Critical Bandwidth. J. Acoust. Soc. Am. 38, 548-560 (1965).
  13. Kameoka, A., Kuriyagawa, M. Consonance theory part I: Consonance of dyads. J. Acoust. Soc. Am. 45, 1451-1459 (1969).
  14. Tramo, M. J., Bharucha, J. J., Musiek, F. E. Music perception and cognition following bilateral lesions of auditory cortex. J. Cogn. Neurosci. 2, 195-212 (1990).
  15. Schellenberg, E. G., Trehub, S. E. Children’s discrimination of melodic intervals. Dev. Psychol. 32 (6), 1039-1050 (1996).
  16. Peretz, I., Blood, A. J., Penhune, V., Zatorre, R. J. Cortical deafness to dissonance. Brain. 124, 928-940 (2001).
  17. Mcdermott, J. H., Schultz, A. F., Undurraga, E. A., Godoy, R. A. Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature. 535, 547-550 (2016).
  18. Blood, A. J., Zatorre, R. J., Bermudez, P., Evans, A. C. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2, 382-387 (1999).
  19. Pallesen, K. J., et al. Emotion processing of major, minor, and dissonant chords: A functional magnetic resonance imaging study. Ann. N. Y. Acad. Sci. 1060, 450-453 (2005).
  20. Foss, A. H., Altschuler, E. L., James, K. H. Neural correlates of the Pythagorean ratio rules. Neuroreport. 18, 1521-1525 (2007).
  21. Limb, C. J., Braun, A. R. Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS ONE. 3, (2008).
  22. Zarate, J. M. The neural control of singing. Front. Hum. Neurosci. 7, 237 (2013).
  23. Larson, C. R., Altman, K. W., Liu, H., Hain, T. C. Interactions between auditory and somatosensory feedback for voice F0 control. Exp. Brain Res. 187, 613-621 (2008).
  24. Belyk, M., Pfordresher, P. Q., Liotti, M., Brown, S. The neural basis of vocal pitch imitation in humans. J. Cogn. Neurosci. 28, 621-635 (2016).
  25. Kleber, B., Veit, R., Birbaumer, N., Gruzelier, J., Lotze, M. The brain of opera singers: Experience-dependent changes in functional activation. Cereb. Cortex. 20, 1144-1152 (2010).
  26. Jürgens, U. Neural pathways underlying vocal control. Neurosci. Biobehav. Rev. 26, 235-258 (2002).
  27. Kleber, B., Birbaumer, N., Veit, R., Trevorrow, T., Lotze, M. Overt and imagined singing of an Italian aria. Neuroimage. 36, 889-900 (2007).
  28. Kleber, B., Zeitouni, A. G., Friberg, A., Zatorre, R. J. Experience-dependent modulation of feedback integration during singing: role of the right anterior insula. J. Neurosci. 33, 6070-6080 (2013).
  29. Zarate, J. M., Zatorre, R. J. Experience-dependent neural substrates involved in vocal pitch regulation during singing. Neuroimage. 40, 1871-1887 (2008).
  30. González-García, N., González, M. A., Rendón, P. L. Neural activity related to discrimination and vocal production of consonant and dissonant musical intervals. Brain Res. 1643, 59-69 (2016).
  31. Oldfield, R. C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 9, 97-113 (1971).
  32. Samuels, M. L., Witmer, J. A., Schaffner, A. . Statistics for the Life Sciences. , (2015).
  33. Eickhoff, S. B., et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage. 25, 1325-1335 (2005).
  34. Evans, A. C., Kamber, M., Collins, D. L., MacDonald, D., Shorvon, S. D., Fish, D. R., Andermann, F., Bydder, G. M., Stefan, H. An MRI-based probabilistic atlas of neuroanatomy. Magnetic Resonance Scanning and Epilepsy. 264, 263-274 (1994).
  35. Ashburner, J., et al. . SPM8 Manual. , (2013).
  36. Özdemir, E., Norton, A., Schlaug, G. Shared and distinct neural correlates of singing and speaking. Neuroimage. 33, 628-635 (2006).
  37. Brown, S., Ngan, E., Liotti, M. A larynx area in the human motor cortex. Cereb. Cortex. 18, 837-845 (2008).
  38. Worsley, K. J. Statistical analysis of activation images. Functional MRI: An introduction to methods. , 251-270 (2001).
  39. . FSL Atlases Available from: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases (2015)
  40. Bidelman, G. M., Krishnan, A. Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. J. Neurosci. 29, 13165-13171 (2009).
  41. McLachlan, N., Marco, D., Light, M., Wilson, S. Consonance and pitch. J. Exp. Psychol. – Gen. 142, 1142-1158 (2013).
  42. Thompson, W. F., Deutsch, D. Intervals and scales. The psychology of music. , 107-140 (1999).
  43. Hurwitz, R., Lane, S. R., Bell, R. A., Brant-Zawadzki, M. N. Acoustic analysis of gradient-coil noise in MR imaging. Radiology. 173, 545-548 (1989).
  44. Ravicz, M. E., Melcher, J. R., Kiang, N. Y. -. S. Acoustic noise during functional magnetic resonance imaging. J Acoust. Soc. Am. 108, 1683-1696 (2000).
  45. Cho, Z. H., et al. Analysis of acoustic noise in MRI. Magn. Reson. Imaging. 15, 815-822 (1997).
  46. Belin, P., Zatorre, R. J., Hoge, R., Evans, A. C., Pike, B. Event-related fMRI of the auditory cortex. Neuroimage. 429, 417-429 (1999).
  47. Hall, D. A., et al. "Sparse" temporal sampling in auditory fMRI. Hum. Brain Mapp. 7, 213-223 (1999).
  48. Ternström, S., Sundberg, J. Acoustical factors related to pitch precision in choir singing. Speech Music Hear. Q. Prog. Status Rep. 23, 76-90 (1982).
  49. Ternström, S., Sundberg, J. Intonation precision of choir singers. J. Acoust. Soc. Am. 84, 59-69 (1988).
check_url/fr/55419?article_type=t

Play Video

Citer Cet Article
González-García, N., Rendón, P. L. fMRI Mapping of Brain Activity Associated with the Vocal Production of Consonant and Dissonant Intervals. J. Vis. Exp. (123), e55419, doi:10.3791/55419 (2017).

View Video