Summary

转换纳米粒子介导的激酶活化远程触发细胞内信号转导的集成系统

Published: August 30, 2017
doi:

Summary

在这个协议中, 笼状蛋白激酶 a (PKA), 细胞信号转导 bioeffector, 被固定在纳米粒子表面, 微量进入胞, 并激活由 upconverted 紫外线光近红外线 (近红外) 照射, 诱导下游应力纤维解体的胞。

Abstract

转换纳米粒子 (UCNP) 介导的活化是一种新的方法远程控制 bioeffectors 与更少的光和更深的组织渗透。然而, 现有的仪器在市场上是不容易兼容的转换应用。因此, 修改商业上可用的仪器是这项研究的关键。本文首先阐述了传统的 fluorimeter 和荧光显微镜的改进, 使其与光子转换实验相兼容。然后, 我们描述了一个近红外线 (近红外) 触发笼蛋白激酶催化亚基 (PKA) 固定在 UCNP 复合物的合成。还报告了显微注射和近红外活化程序的参数。在笼 PKA-UCNP 微量成 REF52 成纤维细胞后, 近红外辐射明显优于传统的紫外线照射, 有效地触发了活细胞中的 PKA 信号传导通路。同时, 正、负控制实验证实, PKA 诱导的应力纤维分解通路是由近红外辐射引起的。因此, 使用蛋白质修饰的 UCNP 提供了一种创新的方法, 远程控制 light-modulated 细胞实验, 其中直接暴露在紫外线必须避免。

Introduction

化学修饰的蛋白质, 可以光 (例如, PKA 笼的蛋白质) 已经发展成为一个新兴的领域, 在化工生物学性操作细胞间生化过程1,2 ,3。当激活这些笼中的蛋白质时, 利用光作为刺激提供了绝佳的时空分辨率。然而, 紫外线会导致不需要的形态学改变, 细胞凋亡和 DNA 损伤4,5。因此, photocaging 组的设计最近的发展重点是使 photocleavage 在较长波长或双光子激励下减少光, 以及增加深层穿透6,7。响应较长波长的锁定组允许我们选择合适的 uncaging 波长 (、通道), 以便在两个或多个锁定组存在7时有选择性地激活 bioeffectors。鉴于这些有用的特征, 开发新的红光 photocaging 小组是非常重要的上游工作, 在光化学方法的生物研究范围内, 从探索的反应机制, 以控制细胞活动8。然而, 一个双光子锁定群通常过于疏水性由于融合芳香环结构, 和可见光锁定组通常是有机金属, 与芳香配体。当 bioeffector 是蛋白质或酵素时, 这种疏水/芳香物产不适合, 因为它使酵素或蛋白质的激活站点和导致作用损失, 即使共轭和光解仍然工作在化工水平上2 ,9

UCNPs 是将近红外激发光转换为紫外线的有效传感器。这一独特而迷人的 UCNPs 的财产提供了现实的解决方案, 以应对与活化和触发控制释放小分子, 包括叶酸10, 顺铂衍生物11, DNA/siRNA12, 共聚物泡13, 空心粒子14。然而, 据我们所知, 目前为止, UCNP 辅助的酶或蛋白质活化还没有经过测试。因为没有成功的案例使用红光或近红外光谱来光酶, 我们被提示执行的近红外触发活化的蛋白质/酶结构组成的化学改性笼酶复合物与二氧化硅涂层,掺杂稀土的 UCNP15。在这项研究中, UCNP 被共轭的快速反应信号转导激酶的形式笼 PKA。PKA 控制糖原合成和骨架调节, 响应外部刺激通过循环腺苷磷酸 (阵营) 调节在胞16。本文研究了近红外辐照下细胞实验中酶激活的时间和空间方式的可行性。这种 UCNP 辅助的活化平台是一种新的方法, photoactivate 的酶使用近红外光谱和避免不受欢迎的信号转导反应由传统的紫外线照射2,4

在细胞膜上转移大的 bioeffectors (例如,蛋白质) 很难控制细胞活动。虽然粒子固定化的蛋白质可能更容易通过吞转移到胞, 吞可能被破坏或退化通过内涵诱捕和随后的溶酶体退化2,4。即使笼状蛋白在膜移位后仍然功能正常, 移位量也不足以触发细胞响应2,17。与之形成鲜明对比的是, 微注射是一种直接和定量的方法, 可以将大的 bioeffectors 到细胞的细胞质中。此外, UCNP 固定化的 bioeffector 需要 upconverted 光来激活。因此, 光学仪器需要进一步的修改来测量、可视化和利用转换光。在这项工作中, 提供一个笼 PKA-UCNP 复合物的细胞使用显微注射和以下基本光谱学和显微镜修改的近红外活化将详细介绍。

Protocol

注意: 该协议描述了对转换辅助活化的一个详细的仪表修改, 这是一种生成笼式 PKA-UCNP 的合成过程, 它是由二氧化硅涂层的 UCNP 的透射电子显微镜 (TEM)和笼 PKA-UCNP 样品, 紫外线和近红外光解设置, 细胞制备, PKA UCNP 显微注射, 活化研究, 和 REF52 细胞的应力纤维染色. 1. 转换频谱测量的 Fluorimeter 设置 在荧光光谱仪的试管持有者旁边安装4X 物镜, 以便激光聚焦在试管的中?…

Representative Results

在图 1中说明了笼式酶 UCNP 结构的设计。PKA 酶第一反应与 2-硝基苄溴生成一个非活性笼 PKA, 然后静电固定在 UCNP 表面。UCNPs 发出 upconverted 光, 因此 photolytically 在胱氨酸199和胱氨酸343上切割邻硝基苄基基团, 生成激活的 PKA。TEM 图像和布拉德福德化验证实, PKA 和笼 PKA 被固定在 UCNPs 表面, 并在紫外 UCNP 检测后的笼 PKA 活化溶液的激酶活性 (<strong class="xfig"…

Discussion

此前, 霍夫曼和同事发现, 在自由 PKA19的微注射后, 在 REF52 细胞中观察到戏剧性的形态学改变。在另一项研究中, 劳伦斯小组证明, 笼 PKA 可以激活在体内, 导致形态学变化和应力纤维的解体时, 受到紫外线光解20。早先关于开发 upconverted 紫外光的报告活化显示了激活的几个 UCNP 协助, 笼, 小分子 bioeffectors21,22,</…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢中央研究院纳米科技项目和台湾科技部的资助 (101-2113 米-001-001-MY2; 103-2113 米-001-028-MY2)。

Materials

Reagent
Tris(hydorxymethyl)aminomethane Sigma 154563
Magnesium chloride hexahydrate Sigma M9272
MOPS Sigma M1254
HEPES Sigma H4034
Sodium chloride  Sigma 31434
Potassium chloride Sigma 12636
Yttrium acetate hydrate Sigma 326046 Y(C2H3CO2)3 · xH2O
Thulium(III) acetate hydrate Alfa Aesar 14582 Tm(CH3CO2)3 · xH2O
Ytterbium(III) acetate tetrahydrate Sigma 326011 Yb(C2H3O2)3 · 4H2O
1-Octadecene Sigma O806
Oleic acid Sigma 364525
Methanol  macron 304168
Sodium hydroxide Sigma 30620
Ammonium fluoride J.T.Baker 69804
IGEPAL CO-520 Sigma 238643
Cyclohexane J.T.Baker 920601
Amomonium hydroxide (28%-30%) J.T.Baker 972101 Ammonia
Tetraethyl orthosilicate (TEOS) Sigma 8658
DL-Dithiothreitol (DTT) Sigma D0632
N-hydroxymaleimide (NHM) Sigma 226351 PKA activity blocking reagent
Prionex protein stabilizer solution from hog collagen Sigma 81662 Protein stabilizer solution
2-nitrobenzyl bromide (NBB) Sigma 107794 PKA caging reagent
8-(4-Chlorophenylthio)adenosine 3′,5′-cyclic monophosphate sodium salt Sigma C3912 8-CPT-cAMP
Pyruvate Kinase/Lactic Dehydrogenase enzymes from rabbit muscle Sigma P0294 PK/LDH
Adenosine 5'-triphosphate disodium Sigma A2387 ATP
β-NADH reduced from dipotassium Sigma N4505
Phosphoenolpyruvate Sigma P7127 PEP
Coomassie Protein Assay Reagent, 950 ml Thermo Scientific 23200 Bradford assay reagent
cAMP-dependent protein kinase Promega V5161 PKA activity control
pET15b-PKACAT plasmid Addgene #14921
pKaede-MC1 plasmid CoralHue AM-V0012
Phosphate buffered saline (PBS), pH 7.4 Thermo Scientific 10010023
DMEM, high glucose, pyruvate Gibco 12800-017 Cell culture medium
Leibovitz L-15 Medium Biological Industries 01-115-1A Cell culture medium
Fetal Bovine Serum Biological Industries 04-001-1A
Paraformaldehyde ACROS 416785000
DAPI Invitrogen D1306 Nucleus staining dye
Alexa 594-phalloidin Invitrogen A12381 F-actin staining dye
5(6)-Carboxyfluorescein Novabiochem 8.51082.0005
5(6)-Carboxytetramethylrhodamine  Novabiochem 8.51030.9999
Pierce Coomassie (Bradford) Protein Assay Kit Thermo Scientific 23200
CelluSep T4 Tubings/Nominal filter rating MWCO 12000-14000 Da Membrane Filtration Products, Inc. 1430-33 Dialysis membrane
Millex-HV Syringe Filter Unit, 0.45 µm, PVDF, 13 mm, gamma sterilized EMD Milipore SLHVX13NL
Equipment
Dynamic Light Scattering/Zetapotential Zetasizer nano-ZS Malvern M104
Transmission Electron Microscope JEOL JEM-1400
Fluorescence Spectrophotometer Agilent Technologies 10075200 Cary Eclipse 
UV-Vis Spectrophotometer Agilent Technologies 10068900 Cary 50 
Fluorescence Microscopy Olympus IX-71
950 nm longpass filter  Thorlabs FEL0950
850 nm dichroic mirror shortpass Chroma NC265609
RT3 color CCD system SPOT RT2520
Fluorescence Illumination PRIOR Lumen 200
980nm Infra-red diode laser CNI MDL-N-980-8W
UV LED Spot Light Source UVATA UVATA-UPS412 With a UPH-056-365 nm LED at 200 mW/cm2
Thermal pile sensor OPHIR 12A-V1-ROHS
Picospritzer III Parker Hannifin 052-0500-900 Intracellular Microinjection Dispense Systems
PC-10 Needle puller Narishige PC-10
MANOMETER Digital pressure gauge Lutron PM-9100
One-axis Oil Hydraulic Micromanipulator Narishige MMO-220A
Heraeus Fresco 17 Centrifuge, Refrigerated Thermo Scientific 75002421

References

  1. Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G., Heckel, A. Light-Controlled Tools. Angew Chem Int Ed. 51 (34), 8446-8476 (2012).
  2. Lee, H. M., Larson, D. R., Lawrence, D. S. Illuminating the Chemistry of Life: Design, Synthesis, and Applications of “Caged” and Related Photoresponsive Compounds. ACS Chem Biol. 4 (6), 409-427 (2009).
  3. Pavlovic, I., et al. Cellular Delivery and Photochemical Release of a Caged Inositol-pyrophosphate Induces PH-domain Translocation in Cellulo. Nature Commun. 7, 10622-10629 (2016).
  4. Priestman, M. A., Sun, L. A., Lawrence, D. S. Dual Wavelength Photoactivation of cAMP- and cGMP-Dependent Protein Kinase Signaling Pathways. ACS Chem Biol. 6 (4), 377-384 (2011).
  5. Amatrudo, J. M., Olson, J. P., Lur, G., Chiu, C. Q., Higley, M. J., Ellis-Davies, G. C. R. Wavelength-Selective One- and Two-Photon Uncaging of GABA. ACS Chem Neurosci. 5 (1), 64-70 (2014).
  6. Warther, D., et al. Two-Photon Uncaging: New Prospects in Neuroscience and Cellular Biology. Bioorg Med Chem. 18 (22), 7753-7758 (2010).
  7. Priestman, M. A., Shell, T. A., Sun, L., Lee, H. M., Lawrence, D. S. Merging of Confocal and Caging Technologies: Selective Three-Color Communication with Profluorescent Reporters. Angew Chem. Int Ed. 51 (31), 7684-7687 (2012).
  8. Hansen, M. J., Velema, W. A., Lerch, M. M., Szymanski, W., Feringa, B. L. Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. Chem Soc Rev. 44 (11), 3358-3377 (2015).
  9. Klán, P., et al. Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. Chem Rev. 113 (1), 119-191 (2013).
  10. Chien, Y. H., et al. Near-Infrared Light Photocontrolled Targeting, Bioimaging, and Chemotherapy with Caged Upconversion Nanoparticles in Vitro and in Vivo. ACS Nano. 7 (10), 8516-8528 (2013).
  11. Min, Y. Z., Li, J. M., Liu, F., Yeow, E. K. L., Xing, B. G. Near-Infrared Light-Mediated Photoactivation of a Platinum Antitumor Prodrug and Simultaneous Cellular Apoptosis Imaging by Upconversion-Luminescent Nanoparticles. Angew Chem Int Ed. 53 (4), 1012-1016 (2014).
  12. Yang, Y. M., Liu, F., Liu, X. G., Xing, B. G. NIR Light Controlled Photorelease of siRNA and Its Targeted Intracellular Delivery Based on Upconversion Nanoparticles. Nanoscale. 5 (1), 231-238 (2013).
  13. Wu, T. Q., Barker, M., Arafeh, K. M., Boyer, J. C., Carling, C. J., Branda, N. R. A UV-Blocking Polymer Shell Prevents One-Photon Photoreactions while Allowing Multi-Photon Processes in Encapsulated Upconverting Nanoparticles. Angew Chem Int Ed. 52 (42), 11106-11109 (2013).
  14. Zhou, L., Chen, Z. W., Dong, K., Yin, M. L., Ren, J. S., Qu, X. G. DNA-mediated Construction of Hollow Upconversion Nanoparticles for Protein Harvesting and Near-Infrared Light Triggered Release. Adv Mater. 26 (15), 2424-2430 (2014).
  15. Gao, H. -. D., et al. Construction of a Near-Infrared-Activatable Enzyme Platform To Remotely Trigger Intracellular Signal Transduction Using an Upconversion Nanoparticle. ACS Nano. 9 (7), 7041-7051 (2015).
  16. Wehbi, V. L., Taskén, K. Molecular Mechanisms for cAMP-Mediated Immunoregulation in T cells – Role of Anchored Protein Kinase A Signaling Units. Front Immunol. 7, (2016).
  17. Pitchiaya, S., Heinicke, L. A., Custer, T. C., Walter, N. G. Single Molecule Fluorescence Approaches Shed Light on Intracellular RNAs. Chem Rev. 114 (6), 3224-3265 (2014).
  18. Gao, D., Tian, D., Zhang, X., Gao, W. Simultaneous Quasi-one dimensional Propagationand Tuning of Upconversion Luminescence Through Waveguide Effect. Scientific Rep. 6, 22433-22442 (2016).
  19. Roger, P. P., Rickaert, F., Huez, G., Authelet, M., Hofmann, F., Dumont, J. E. Microinjection of catalytic subunit of cyclic AMP-dependent protein kinases triggers acute morphological changes in thyroid epithelial cells. FEBS Lett. 232 (2), 409-413 (1988).
  20. Curley, K., Lawrence, D. S. Photoactivation of a Signal Transduction Pathway in Living Cells. J Am Chem Soc. 120 (33), 8573-8574 (1998).
  21. Carling, C. J., Nourmohammadian, F., Boyer, J. C., Branda, N. R. Remote-control Photorelease of Caged Compounds Using Near-infrared Light and Upconverting Nanoparticles. Angew Chem Int Ed. 49 (22), 3782-3785 (2010).
  22. Garcia, J. V., et al. NIR-triggered Release of Caged Nitric Oxide Using Upconverting Nanostructured Materials. Small. 8 (24), 3800-3805 (2012).
  23. Liu, G., Zhou, L. Z., Su, Y., Dong, C. M. An NIR-responsive and sugar-targeted polypeptide composite nanomedicine for intracellular cancer therapy. Chem Commun. 50 (83), 12538-12541 (2014).
check_url/fr/55769?article_type=t

Play Video

Citer Cet Article
Gao, H., Thanasekaran, P., Chen, T., Chang, Y., Chen, Y., Lee, H. An Integrated System to Remotely Trigger Intracellular Signal Transduction by Upconversion Nanoparticle-mediated Kinase Photoactivation. J. Vis. Exp. (126), e55769, doi:10.3791/55769 (2017).

View Video