Summary

用基团特异 rDNA 引物对水生无脊椎动物进行遗传肠道含量分析的实验室规程

Published: October 05, 2017
doi:

Summary

无脊椎动物最常见的肠道成分分析是可视的。由于需要对猎物生物体的形态多样性有强烈的了解, 他们会想念身体柔软的猎物, 由于对猎物的强烈粉碎, 对包括片在内的一些生物体来说几乎是不可能的。我们提供了详细的, 新的遗传方法, 动物猎物识别在饮食中的片。

Abstract

分析食物网对于更好地了解生态系统是至关重要的。例如, 食物网络的相互作用可能会因非土著物种的入侵而发生严重的变化。然而, 在许多情况下, 对场捕食者-食饵相互作用的精确识别是困难的。这些分析通常是基于对肠道内容的视觉评估或稳定同位素比率的分析 (δ15N 和δ13C)。这些方法需要对个别捕食生物体的形态多样性或同位素特征进行全面的了解, 从而导致对猎物生物体的准确识别的障碍。视觉肠道内容分析, 特别是低估了软体的猎物有机体, 因为浸泡, 摄食和消化的猎物有机体, 使鉴定的特定物种很难。因此, 聚合酶链反应 (PCR) 为基础的策略, 例如使用组特定的入门集, 提供了一个强大的工具, 调查食物网络互动。在这里, 我们描述了详细的协议, 以调查的肠道内容的动物消费者从现场使用的组特定的入门套核核糖体脱氧核糖核酸 (rDNA)。DNA 可以从整个标本中提取 (在小分类群的情况下), 或者从野外采集的标本的肠道内容。dna 模板的存在和功能的效率需要直接从被测试的个体中得到确认, 使用针对各自 dna 亚基的通用引物集。我们还证明, 被消耗的猎物可以进一步确定的物种水平通过 PCR 与未修改的组特异性引物结合随后单链构象多态性 (SSCP) 分析使用聚丙烯酰胺凝胶。此外, 我们还表明, 使用不同的荧光染料作为标签, 可以通过自动片段分析从多个肠道含量样本中对不同猎物群的 DNA 片段进行平行筛选。

Introduction

捕食-食饵的相互作用, 构成了大多数的营养相互作用和食物网络动力学, 是关键的方面, 以表征物质和能量的通量在整个食物链内和之间的生态系统, 这是生态学的主要目标之一1. 碳和养分的来源和流动的确定是进一步了解生态系统之间的连通性2。然而, 生态系统, 如河流及其汇水区, 不仅与有机物和养分的通量有关, 而且还由生物体的运动3。因此, 生境的改变中断了与这些系统挂钩的资源流动, 这不仅直接而且间接地改变了捕食者-猎物群落的组成, 从而极大地改变了这两个生态系的食物网。例如, 食物网的变化已经被证明与单一捕食物种 (例如, 虹鳟鱼)4的移动有关。这种变化可能威胁生物多样性和水生生态系统的运作。因此, 分析这一领域中的捕食者与猎物的相互作用, 对于确定人类引起的环境变化 (如水管理做法) 对水生生态系统当地生物多样性的影响至关重要。

由于在复杂的系统中跟踪营养关联是困难的, 因此已经建立了几种方法来评估在5字段中的喂养交互。传统上, 在田间觅食相互作用的研究是基于对猎物遗骸的视觉识别在解剖内脏和需要广泛的知识关于形态学猎物多样性。视觉肠内容分析提供了一些消费者群体的资源使用的洞察力 (例如,龙虾的饮食的季节性变化6和鱼7,8或喂养偏好的桡足类)。然而, 消化的物理过程使视觉肠内容分析变得困难, 通常会漏掉软体的猎物-有机体9。对于以液体摄取为食的物种或某些无脊椎动物的消费者, 在进食前密集粉碎他们的食物, 如片, 在肠道内容中对猎物种类的视觉识别是不可能的10。由于这些限制, 分子分析提供了一个有希望的选择。

分子分析现在已经成为一种常见的工具, 允许快速和精确的猎物检测肠道内容。这种技术的范围多种多样: 基于单克隆抗体或聚合酶链反应 (PCR) 的策略经常被使用, 因为它们具有高特异性和敏感性11。开发新的单克隆抗体是时间和成本密集型, 因此, 当抗体不存在11时, 其他分子技术的应用就更有用了。另一种常见的方法是放大脱氧核糖核酸 (脱氧核糖核酸) 的区域, 象核糖体核糖核酸 (RNA) 基因存在于多数种类, 使用普遍引物设置12,13。在使用这种技术时, 通常不可能在混合来源的 DNA14中确定整个捕食生物体的范围。有效的方法, 以避免这种缺点是使用组特定的入门集的遗传肠道内容分析。设计为只放大特定目标群的 DNA 区域并排除所有其他物种15,16, 组特定的引物可在指定组的分类级别上识别捕食生物体, 而无需时间和成本密集型的二次分析。然而, 像所有的肠道内容分析, 这种分析只提供了一个喂养行为的快照。因此, 结合分子肠含量分析与时间自然示踪剂 (例如,稳定同位素) 的分析被认为是有益的1,2

在这里, 我们描述了一个详细的方法, pcr 调查的捕食-猎物的相互作用使用组特定的引物的核核糖体 DNA (rDNA) 地区与稳定同位素分析的同一标本。我们描述了通过琼脂糖凝胶电泳检测单个猎物群的 DNA。此外, 我们还提供了一个机会, 进一步下游分析 PCR 产品的这种特定的群体特异性底漆适用于任何时候更高的分类分辨率比底漆的特异性是必需的。由于单股 DNA (ssDNA) 片段形成了由其主序17确定的三级构象, 因此由这种基团特异的引物放大的片段的微小变化会导致构象变化。这种变化可以检测到单链构象多态性 (SSCP) 分析与聚丙烯酰胺凝胶17,18, 使更精确的识别猎物生物体 (下至物种水平)。

虽然琼脂糖凝胶电泳是一个常见的和廉价的工具, 可视化 dna 片段和确定其近似长度19, 分辨率取决于 dna 的数量和染色染料使用20。通常, 在使用纯 DNA 样本时, 可视化是直接的, 但是在消费者的肠道中潜在的少量的猎物 dna 可能会使琼脂糖凝胶电泳结果的评分复杂化。尽管如此, 这种检测方法是可行的, 以筛选少量的消费样本从外地的一个或几个猎物群, 但复杂的评分, 使筛选的大量样本的多个猎物群非常时间密集, 从而不切实际.更灵敏的检测方法是通过毛细管电泳自动分析碎片, 另外还允许确定片段的确切长度21。一些微卫星研究表明, 通过使用不同的荧光染料作为标签, 可以通过自动片段分析22,23来检测和确定可比较长度的不同片段. 24。因此, 我们还提出了一个详细的协议, 并行检测 DNA 从多个猎物群使用 PCR 与标记组特定的底漆集和检测通过自动片段分析与自动排序器。此外, 我们提出的案例研究的结果表明, 通过自动片段分析检测猎物的 DNA 是一种方法, 也使相对量化的摄入猎物。

Protocol

1. 收集和 #160; 从田间无脊椎动物, 并准备样本进行遗传肠道含量分析. 在每个站点收集无脊椎动物, 将个人感兴趣的个体分类为单管, 并将其直接冷冻在液氮或干冰中, 以防止肠道间隙和 DNA 降解. 注意: 避免在酒精中储存样品, 因为一些无脊椎动物倾向于在酒精杀死它们之前反刍. 仅使用中等大小的胃肠道 (大约和 #62; 3 mm) 动物种用于遗传肠道含量的分析因此, 样品的剩…

Representative Results

我们成功地使用了本协议中描述的步骤进行不同研究中的饮食分析。在本节中, 我们将介绍该协议不同部分的适用性的示例。 以 SSCP 分析为例, 演示了作者28建立的组特定引物集的有效性以及对 PCR 产物进行进一步下游分析的潜力, 并进行了饲喂试验。个体的Dikerogammarus villosus作为捕食者和Caenis的?…

Discussion

在这里, 我们提出了一个简单和经济高效的方法, pcr 确定的捕食-猎物的相互作用, 从田间样品通过组特定引物的 rDNA 地区, 可以结合其他 non-molecular 分析相同的标本。但是, 该协议中有几个关键步骤。首先, 保证所用底漆的特殊性是必不可少的。其次, 在胃肠道的制备和随后的 DNA 提取过程中, 避免肠道内容物质的污染和丢失是至关重要的。虽然 cross-sample 污染可能导致对猎物 DNA 的假阳性检测, 但肠?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢 Silke 克拉森的生态系统分析和评估研究所 (创), RWTH 亚琛为她的帮助建立了该协议中使用的特定于组的入门集。我们还要感谢基尔大学的彼得马丁和劳拉 Schynawa 的合作, 在水螨的实验。我们还感谢技术实验室助理保持实验室运行顺畅, 并准备注册的公司和目录编号。这项工作得到了德国研究基金会 (DFG; 项目 GE 2219/3-1) 的支持。

Materials

liquid nitrogen Any NA For transport of field samples of macroinvertebrates to the laboratory.
1.5 ml reaction tubes – Safelock Any NA For collection of consumer specimens in the field and subsequent conservation in liquid nitrogen reaction tubes do not necessarily need to be PCR clean. To avoid exploding of the tubes, the lid of the tubes should be punctured with a needle.
Stereomicroscope Any NA Make sure magnification is suitable to prepare the gastro-intestinaltract of the size of consumer of interest.
Petri dishes Any NA To dissect the gastro-intestinal tract of consumer specimens under the stereomikroscope.
Stainless steel foceps: Dumont forceps No. 7 Bioform B40d This curved stainless steel forceps can sometimes be very helful to hold specimen fixed inbetween the curved part without puncturing the gastro-intestinal tract.
Stainless steel foceps: Dumont forceps Electronic No. 5 Bioform B40b This fine stainless steel forceps is ideally suited for the preparation of the gastro-intestinal tract of consumer specimens.
DNA-ExitusPlus AppliChem A7409,1000RF Decontamination solution for the removal of DNA and RNA contaminations
fuzz-free paper towel Any NA
Lab scale Any NA Precision needs to be at least 0.01 g.
Microlitre pipettes (0.5-10/10-100/50-200/100-1000 μL) Any NA
Safe-Lock Tubes 2.0 ml VWR 211-2165 It is crucial that these raction tubes are free of DNA, DNase, RNase and PCR inhibitors (PCR clean)!
Safe-Lock Tubes 1.5 ml VWR 211-2164 It is crucial that these raction tubes are free of DNA, DNase, RNase and PCR inhibitors (PCR clean)!
Sodium chloride ≥99.5%, p.a., ACS, ISO carlroth 3957.3 For salt extraction buffer (SEB) and 5M NaCl-solution required for extraction of DNA.
Tris(hydroxymethyl)-aminomethane Tris carlroth 4855.2 For salt extraction buffer (SEB) and TBE buffer
Microlitre pipettes (0.5-10/10-100/50-200/100-1000 μL) carlroth 8043.1 For salt extraction buffer (SEB) and TBE buffer
Boric acid ≥99.8 %, p.a., ACS, ISO carlroth 6943.2 For TBE buffer. Not needed if commercialy available TBE buffer is obtained.
Sodium dodecyl sulfate (SDS) carlroth 4360.1 For extraction of DNA
Proteinase K lyophil. carlroth 7528.1 Prepare a working solution containing 10 mg/ml.
TissueLyser II Quiagen 85300 Bead mill for homogenization of the samples.
Stainless Steel Beads, 5 mm Quiagen 69989 For homogenization of samples.
Heating Thermoshaker Any NA
Vortex Mixer Any NA
Refrigerated centrifuge: himac CT 15 RE Hitachi NA Refrigerated centrifuge used for centrifugation during the extraction of DNA (Protocol 1).
Isopropanol carlroth 6752.5
Ethanol 99.8 %, p.a. Any NA
Water Molecular biology grade (ddH2O) AppliChem A7398,1000 nuclease-free (stream sterilized and DEPC treated) water used for re-suspension of DNA and whenever refered to ddH2O within the manuscript
Unmodified Olegonucleotides Eurofins MWG Operon NA Primers unlabeled
Modified olegonucleotides Metabion International AG NA Primers labelled
peqGOLD Taq all inclusive VWR Peqlab 01-1000 Taq all inclusive for PCR reaction mixtures (reaction buffer Y and S, dNTPs and MgCl2)
Primus 96 advanced gradient thermocycler or peqStar96x Universal Gradient Peqlab NA Primer sets were originally established on a Primus 96 advanced gradient thermocycler. As this cycler was quite old, we than checked if our primer sets are efficient and specific under the same conditions using the peqSta96x (which also could simulate the older model). However, tests showed that our primers work well and are still specific (see Koester et al. 2013) without using the simulation of the old machine.
Standard 96 Well PCR Plates VWR Peqlab 732-2879 Used for PCR reactions.
Low Profile Tube Stripes 0.15 ml with Flat Cap Stripes VWR Peqlab 732-3223 Cap stripes used to close the PCR plates.
Agarose Peqlab 35-1020 Used for gel electrophoresis.
Microwave Any NA
Conical flask Any NA
Measuring cylinder Any NA
Horizontal electrophoresis unit and respective combs with teeth Any NA For agarose gel electrophoresis.
Electrophoresis Power Supply PS3002 Life Technologies NA
Ethidium bromide solution 1 % carlroth 2218.1 Used to prepare staining bath for agarose gels.
Formamide carlroth 6749.1 Needded for the denaturation buffer for SSCP analyses.
Bromphenol blue AppliChem A3640.0010 Needed for the loading dye for agarose gel electrophoresis.
Sucrose carlroth 4621.1 Needed for the loading dye for agarose gel electrophoresis.
100 bp-DNA-Ladder extended carlroth T835.1 As size standard for agarose gel electrophoresis.
UV-Documentation system Any NA To visualize gel electrophoresis results.
Rotiphorese NF-Acrylamide/Bis-solution 40 % (29:1) carlroth A121.1 For the preparation of polyacrylamid gels.
Ammonium peroxydisulphate carlroth 9592.2 For the preparation of polyacrylamid gels.
foldback clips (32 mm) Any NA For the preparation of polyacrylamid gels.
square-shaped plastic box (21 × 6.5 × 5 cm) Any NA For the preparation of polyacrylamid gels.
Tetramethylethylenediamine (TEMED) carlroth 23.67.1 For the preparation of polyacrylamid gels.
Beaker Any NA
RC 10 Digital chiller VWR 462-0138 For SSCP analyses using polyacrylamide gel electrophoresis.
Vertical electrophoresis unit P10DS (OWL Separation Systems) VWR 700-2361 For SSCP analyses using polyacrylamide gel electrophoresis.
Notched glass plate VWR 730-0261 For SSCP analyses using polyacrylamide gel electrophoresis.
Blank glass plate VWR 730-0260 For SSCP analyses using polyacrylamide gel electrophoresis.
Spacers VWR 730-0262 For SSCP analyses using polyacrylamide gel electrophoresis.
Comb with 25 teeth VWR 730-0294 For SSCP analyses using polyacrylamide gel electrophoresis.
Shaking platform Any NA For constant shaking of the staining bath.
GelStar Nucleic Acid Stain (Lonza Rockland, Inc.) Biozym 850535 (50535) For staining of polyacrylamide gels.
GenomeLab DNA Size Standard Kit 400bp AB Sciex 608098 For automated fragment analyses. Size stanard for Batch B.
GenomeLab DNA Size Standard Kit 600bp AB Sciex 608095 For automated fragment analyses. Size stanard for Batch A.
Sample Loading Solution (SLS) AB Sciex 608082 For automated fragment analyses.
Sequenzing plate – 96 Well Polypropylene PCR Microplate Costar 6551 For automated fragment analyses.
Plate centrifuge, PerfectSpin P VWR Peqlab NA mini plate centrifuge used to spin down PCR products.
Buffer plate – 96 Well EIA/RIA Clear Flat Bottom Polystyrene Not Treated Microplate Corning 9017 For automated fragment analyses.
GenomeLab Seperation buffer AB Sciex 608012 For automated fragment analyses.
Separation Gel – LPAI AB Sciex 608010 For automated fragment analyses.
Sequenzer – CEQ8000 Genetic Analysis System Beckman Coulter NA For automated fragment analyses.
GeneMarker V1.95 Softgenetics NA To analyze results of automated fragment analyses.

References

  1. Carreon-Martinez, L., Heath, D. D. Revolution in food web analysis and trophic ecology: diet analysis by DNA and stable isotope analysis. Mol Ecol. 9 (1), 25-27 (2010).
  2. Hardy, C. M., Krull, E. S., Hartley, D. M., Oliver, R. L. Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Mol Ecol. 19 (1), 197-212 (2010).
  3. Baxter, C. V., Fausch, K. D., Saunders, W. C. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biol. 50 (2), 201-220 (2005).
  4. Baxter, C. V., Fausch, K. D., Murakami, M., Chapman, P. L. Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecol. 85 (10), 2656-2663 (2004).
  5. Traugott, M., Kamenova, S., Ruess, L., Seeber, J., Plantegenest, M. Empirically Characterising Trophic Networks: What Emerging DNA-Based Methods, Stable Isotope and Fatty Acid Analyses Can Offer. Adv. Ecol. Res. Vol 49: Ecological Networks in an Agricultural World. 49, 177-224 (2013).
  6. Diaz Arredondo, M. A., Guzman del Proo, S. A. Feeding habits of the spiny lobster (Panulirus interruptus Randall, 1840) in Bahia Tortugas, Baja California Sur. Cienc Mar. 21 (4), 439-462 (1995).
  7. Letourneur, Y., Galzin, R., Harmelin-Vivien, M. Temporal variations in the diet of the damselfish Stegastes nigricans (Lacepède) on a Réunion fringing reef. J Exp Mar Biol Ecol. 217 (1), 1-18 (1997).
  8. Akin, S., Winemiller, K. O. Seasonal variation in food web composition and structure in a temperate tidal estuary. Estuar Coast. 29 (4), 552-567 (2006).
  9. Redd, K. S., Jarman, S. N., Frusher, S. D., Johnson, C. R. A molecular approach to identify prey of the southern rock lobster. Bull Entomol Res. 98 (3), 233-238 (2008).
  10. Gergs, R. Dreissena polymorpha in Lake Constance: An example of a keystone engineer?. Universität Konstanz. , (2009).
  11. Sheppard, S. K., Harwood, J. D. Advances in molecular ecology: tracking trophic links through predator-prey food-webs. Funct Ecol. 19 (5), 751-762 (2005).
  12. Jarman, S. N., Ward, R. D., Elliott, N. G. Oligonucleotide primers for PCR amplification of coelomate introns. Mar Biotechnol (NY). 4 (4), 347-355 (2002).
  13. Verma, S. K., Singh, L. Novel universal primers establish identity of an enormous number of animal species for forensic application. Mol Ecol Notes. 3 (1), 28-31 (2003).
  14. Deagle, B. E., et al. Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions. Mol Ecol. 14 (6), 1831-1842 (2005).
  15. Jarman, S. N., Deagle, B. E., Gales, N. J. Group-specific polymerase chain reaction for DNA-based analysis of species diversity and identity in dietary samples. Mol Ecol. 13 (5), 1313-1322 (2004).
  16. Jarman, S. N., Redd, K. S., Gales, N. J. Group-specific primers for amplifying DNA sequences that identify Amphipoda, Cephalopoda, Echinodermata, Gastropoda, Isopoda, Ostracoda and Thoracica. Mol Ecol Notes. 6 (1), 268-271 (2006).
  17. Hayashi, K., Yandell, D. W. How sensitive is PCR-SSCP?. Hum Mutat. 2 (5), 338-346 (1993).
  18. Glavač, D., Dean, M. Optimization of the single-strand conformation polymorphism (SSCP) technique for detection of point mutations. Hum Mutat. 2 (5), 404-414 (1993).
  19. Mülhardt, C. . Der Experimentator Molekularbiologie / Genomics. , (2013).
  20. Lee, S. V., Bahaman, A. R. Discriminatory Power of Agarose Gel Electrophoresis in DNA Fragments Analysis. Gel Electrophoresis – Principles and Basics. , (2012).
  21. Wang, X. W., et al. A new electrophoresis technique to separate microsatellite alleles. Afr J Biotechnol. 8 (11), 2432-2436 (2009).
  22. Gemmer, I., Gergs, R. Characterization of the first twelve microsatellite loci for the amphipod Gammarus roeselii (Crustacea: Amphipoda). Conserv Genet Resour. 5 (4), 955-957 (2013).
  23. Olafsson, K., Hjorleifsdottir, S., Pampoulie, C., Hreggvidsson, G. O., Gudjonsson, S. Novel set of multiplex assays (SalPrint15) for efficient analysis of 15 microsatellite loci of contemporary samples of the Atlantic salmon (Salmo salar). Mol Ecol Resour. 10 (3), 533-537 (2010).
  24. Baric, S., Hollrigl, A., Fureder, L., Petutschnig, J., Dalla Via, J. First analysis of genetic variability in Carinthian populations of the white-clawed crayfish Austropotamobius pallipes. Bull. Fr. Peche Piscicult. (380-381), 977-990 (2006).
  25. Koester, M., Gergs, R. No evidence for intraguild predation of Dikerogammarus villosus (Sowinsky, 1894) at an invasion front in the Untere Lorze, Switzerland. Aquat Invasions. 9 (4), 489-497 (2014).
  26. Sonnenberg, R., Nolte, A. W., Tautz, D. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front Zool. 4 (6), 6 (2007).
  27. Koester, M., Bayer, B., Gergs, R. Is Dikerogammarus villosus (Crustacea, Gammaridae) a ‘killer shrimp’ in the River Rhine system?. Hydrobiologia. 768 (1), 299-313 (2016).
  28. Koester, M., Claßen, S., Gergs, R. Establishment of group-specific PCR primers for the identification of freshwater macroinvertebrates. Conserv Genet Resour. 5 (4), 1091-1093 (2013).
  29. Martin, P., Koester, M., Schynawa, L., Gergs, R. First detection of prey DNA in Hygrobates fluviatilis (Hydrachnidia, Acari): a new approach for determining predator-prey relationships in water mites. Exp Appl Acarol. 67 (3), 373-380 (2015).
  30. Deagle, B. E., et al. Studying Seabird Diet through Genetic Analysis of Faeces: A Case Study on Macaroni Penguins (Eudyptes chrysolophus). PLoS One. 2 (9), e831 (2007).
  31. Sint, D., Niederklapfer, B., Kaufmann, R., Traugott, M. Group-Specific Multiplex PCR Detection Systems for the Identification of Flying Insect Prey. PLoS One. 9 (12), e115501 (2014).
  32. Zarzoso-Lacoste, D., Corse, E., Vidal, E. Improving PCR detection of prey in molecular diet studies: importance of group-specific primer set selection and extraction protocol performances. Mol Ecol Resour. 13 (1), 117-127 (2013).
  33. Vestheim, H., Jarman, S. Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachs. Front Zool. 5 (1), 12 (2008).
  34. Harper, G. L., et al. Rapid screening of invertebrate predators for multiple prey DNA targets. Mol Ecol. 14 (3), 819-827 (2005).
check_url/fr/56132?article_type=t

Play Video

Citer Cet Article
Koester, M., Gergs, R. Laboratory Protocol for Genetic Gut Content Analyses of Aquatic Macroinvertebrates Using Group-specific rDNA Primers. J. Vis. Exp. (128), e56132, doi:10.3791/56132 (2017).

View Video