Summary

كيمياء تدفق مستمر: رد فعل ديفينيلديازوميثاني مع حمض-نيتروبينزويك ف

Published: November 15, 2017
doi:

Summary

يحمل تدفق الكيمياء البيئية والمزايا الاقتصادية من خلال الاستفادة من خلط متفوقة، نقل الحرارة، وتكلفة الفوائد. هنا، نحن نقدم مخططا لنقل العمليات الكيميائية من دفعة إلى وضع التدفق. رد فعل ديفينيلديازوميثاني (DDM) مع حمض-نيتروبينزويك ف، أجريت في دفعة والتدفق، اختير للتثبت من صحة الفكرة.

Abstract

استمرار تدفق التكنولوجيا قد تم تحديدها كما الآلي للبيئية والاقتصادية على مزايا متفوقة حشد خلط، نقل الحرارة وتكلفة تحقيق وفورات من خلال استراتيجية “القياس من” مقارنة التقليدية “القياس حتى”. وهنا، نحن تقرير رد فعل ديفينيلديازوميثاني مع حمض-نيتروبينزويك ففي كل دفعة وتدفق وسائط. فعالية نقل رد فعل من دفعة إلى وضع تدفق، من الضروري إجراء أول رد فعل في دفعة. نتيجة لذلك، كان رد فعل ديفينيلديازوميثاني تدرس أولاً دفعة واحدة كدالة لدرجة الحرارة ووقت رد الفعل، والتركيز على الحصول على المعلومات الحركية ومعالجة معلمات. يتم وصف إنشاء مفاعل تدفق الزجاج ويجمع بين نوعين من الوحدات النمطية لرد فعل “خلط” و “الخطية” المجهرية. وأخيراً، رد فعل ديفينيلديازوميثاني مع حمض-نيتروبينزويك فأجريت بنجاح في المفاعل التدفق، بنسبة تصل إلى 95% تحويل ديفينيلديازوميثاني في 11 دقيقة. هذا دليل على رد فعل مفهوم يهدف إلى توفير البصيرة للعلماء للنظر في تدفق التكنولوجيا القدرة التنافسية والاستدامة، وبراعة في أبحاثهم.

Introduction

الكيمياء الخضراء والهندسة وخلق تغيير ثقافة للاتجاه المستقبلي للصناعة1،2،،من34. تكنولوجيا التدفق المستمر قد اعتبرت مفيدة لمزاياه البيئية والاقتصادية الاستفادة من خلط متفوقة، نقل الحرارة، وتكلفة تحقيق وفورات من خلال استراتيجية “القياس من” بدلاً من “القياس حتى” التقليدية5 , 6 , 7 , 8 , 9 , 10.

على الرغم من أن قد يفضل الصناعات التي تنتج منتجات عالية القيمة مثل صناعة الأدوية طويلة تجهيز الدفعات، مزايا تدفق التكنولوجيا أصبحت جذابة بسبب تزايد المنافسة الاقتصادية وفوائد الإنتاج التجاري 11. على سبيل المثال، عندما دفعة الارتقاء بمستوى العمليات، وحدات المقياس التجريبي يجب بني وتشغيلها للتأكد من الحرارة دقيقة وآليات النقل الجماعي. هذا هو يكاد المستدامة ويطرح كثيرا من حياة البراءات القابلة للتسويق للمنتج. وفي المقابل، يسمح معالجة التدفق المستمر لمزايا مقياس خارجاً، القضاء في المرحلة التجريبية والنباتات والهندسة المرتبطة بالإنتاج مقياس حافز مالي كبير. يتجاوز التأثير الاقتصادي، كما تمكن الذري التكنولوجيا المستمر والطاقة كفاءة العمليات. على سبيل المثال، خلط المحسن يحسن النقل الجماعي لنظم ثنائية الطور، مما يؤدي إلى تحسين غلة واستراتيجيات الإنعاش محفز، ومخططات إعادة التدوير اللاحقة. بالإضافة إلى ذلك، والقدرة على إدارتها بدقة درجة الحرارة رد فعل يؤدي إلى مراقبة دقيقة لرد الفعل حركية والمنتج توزيع12. تعزيز عملية مراقبة، نوعية المنتج (المنتجات الانتقائية) وإمكانية تكرار نتائج تأثيراً من الناحيتين البيئية والمالية على السواء.

تدفق المفاعلات متوفرة تجارياً مع مجموعة متنوعة واسعة من الأحجام والتصاميم. وبالإضافة إلى ذلك، يمكن بسهولة تحقيق تخصيص مفاعلات لتلبية الاحتياجات العملية. وهنا، نحن تقرير تجارب أجريت في مفاعل تدفق مستمر لزجاج (الشكل 1). جمعية المجهرية (161 مم × 131 ملم × 8 مم) مصنوعة من الزجاج وهو متوافق مع مجموعة واسعة من المواد الكيميائية والمذيبات وهو مقاومة للتآكل على نطاق واسع من درجات الحرارة (-25-200 درجة مئوية) والضغوط (تصل إلى 18 شريط). صممت المجهرية وعلى الترتيب لخلط الحقن متعددة، وعالية الأداء والوقت الإقامة مرنة، ونقل الحرارة دقيقة. تم تجهيز جميع المجهرية مع اثنين من طبقات فلويديك (-25 – 200 درجة مئوية، وتصل إلى 3 بار) لتبادل الحرارة على جانبي طبقة رد فعل. معدلات نقل الحرارة يتناسب مع المساحة السطحية نقل الحرارة ويتناسب عكسيا مع حجمه. وبالتالي، تسهل هذه المجهرية نسبة السطح إلى الحجم أمثل لنقل الحرارة المحسنة. هناك نوعان من المجهرية (أي وحدات): “خلط” الوحدات النمطية ووحدات “الخطية” (الشكل 2). الوحدات النمطية “خلط” على شكل قلب مصممة لحمل الاضطراب وتحقيق أقصى قدر من الاختلاط. وفي المقابل، توفر النماذج الخطية وقت الإقامة الإضافية.

وكدليل على المفهوم، اخترنا جيدا وصف رد فعل ديفينيلديازوميثاني مع الأحماض الكربوكسيلية13،،من1415،،من1617. رد فعل مخطط يظهر في الشكل 3. الأولى نقل البروتون من حمض الكربوكسيلية ديفينيلديازوميثاني بطيئة وهي خطوة تحديد معدل. الخطوة الثانية هو السريع وينتج رد الفعل المنتج والنيتروجين. في البداية كان التحقيق رد فعل لمقارنة الحموضة النسبي للأحماض الكربوكسيلية العضوية في المذيبات العضوية (أبروتيك وبروتيك). رد فعل من الدرجة الأولى في ديفينيلديازوميثاني والدرجة الأولى في الأحماض الكربوكسيلية.

تجريبيا، ورد فعل أجريت في وجود فائض كبير من حمض الكربوكسيلية (10 المولى معادلات). نتيجة لذلك، كان المعدل الزائفة من الدرجة الأولى بالنسبة ديفينيلديازوميثاني. يمكن الحصول على ثابت معدل الترتيب الثاني ثم بقسمة الزائفة التي تم الحصول عليها تجريبيا أول أمر ثابت معدل تركيز حمض الكربوكسيلية الأولى. وفي البداية، رد فعل ديفينيلديازوميثاني مع حمض البنزويك (pKa = 4.2) تم التحقيق فيها. دفعة واحدة، يبدو أن رد الفعل يكون بطيئا نسبيا، تصل إلى حوالي 90% التحويل في 96 دقيقة. كما معدل رد فعل متناسب مباشرة إلى حموضة حمض الكربوكسيلية، اخترنا كشريك في رد فعل أكثر حمضية من حمض الكربوكسيلية، فنيتروبينزويك حامض (pKa = 3.4) تقصير وقت رد الفعل. وهكذا كان التحقيق رد فعل حمض-نيتروبينزويك فمع ديفينيلديازوميثاني في الإيثانول اللامائى في دفعة وتدفق (الشكل 4). وترد النتائج بالتفصيل في القسم التالي.

عندما ينفذ رد فعل في الإيثانول، ويمكن أن تشكل المنتجات الثلاثة: (ط) بينزيدريل-4-نيتروبينزواتي، الذي ينتج من ردود فعل فنيتروبينزويك-حمض مع ديازونيوم ديفينيلميثاني المتوسطة؛ (ثانيا) بينزيدريل إيثيل البروم التي يتم الحصول عليها من رد فعل المذيب، الإيثانول، مع ديازونيوم ديفينيلميثاني؛ والنيتروجين (ثالثا). لم تدرس توزيع المنتج كما هو موثق توثيقاً جيدا في الأدب؛ بدلاً من ذلك ركزنا اهتمامنا على نقل التكنولوجيا من رد فعل دفعة إلى تدفق مستمر13،،من1415. وراقب تجريبيا اختفاء ديفينيلديازوميثاني. رد فعل العائدات مع تغيير ألوان زاهية، التي يمكن ملاحظتها بصريا من مطيافية الأشعة فوق البنفسجية بالنسبة. وهذا ناتج عن كون أن ديفينيلديازوميثاني مركب أرجواني بشدة في حين جميع المنتجات الأخرى من رد فعل عديم اللون. ولذلك رد فعل يمكن بصريا رصد على أساس نوعية والكمية تليها مطيافية الأشعة فوق البنفسجية (أي اختفاء الاستيعاب diazomethane ثنائي الفينيل في 525 نانومتر). وهنا، نحن التقرير الأول رد فعل حمض-نيتروبينزويك ديفينيلديازوميثاني و pفي الإيثانول في دفعة كدالة للزمن. ثانيا، أن رد فعل بنجاح نقل، ونفذت في المفاعل تدفق الزجاج. تم التحقق من التقدم المحرز في رد فعل عن طريق رصد اختفاء ديفينيلديازوميثاني باستخدام مطيافية الأشعة فوق البنفسجية (في أوضاع دفعة والتدفق).

Protocol

التحذيرات الصحية ومواصفات المواد الكاشفة هيدرازوني بنزوفينون: قد يسبب تهيج الجهاز الهضمي. لم يتم التحقيق الكامل الخواص السمية لهذه المواد. قد يسبب تهيج الجهاز التنفسي. لم يتم التحقيق الكامل الخواص السمية لهذه المواد. قد يسبب تهيج الجلد والعيون تهيج 18- <p class="jove_…

Representative Results

رد فعل المجموعةديفينيلديازوميثاني أعدت وفقا للأدب28،29. كان تبلور المجمع من خلات الإيثيل خماسي البروم ثنائي الفينيل: النفط (100:2)، والأرجواني بلورات تم تحليلها بواسطة الرنين المغناطيسي النووي ح1 ونقطة الانصهار ومرض التصلب ?…

Discussion

وقد اكتسب الكيمياء تدفق الكثير من الاهتمام مؤخرا بمعدل يبلغ حوالي 1,500 منشورات بشأن هذا الموضوع سنوياً في مجالات البحوث الكيمياء (29 في المائة)، والهندسة (25%). وقد أجريت العديد من العمليات الناجحة في تدفق. في العديد من الحالات، قد تجلى كيمياء تدفق يحمل العروض متفوقة لدفعة للعديد من التطبيقات ?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

نود أن نشكر كورنينج لهدية المفاعل تدفق الزجاج.

Materials

Thermometer HB-USA/ Enviro-safe Any other instrument scientific company provider works
Benzophenone hydrazone Sigma-Aldrich Store at 2-8 °C, 96% purity
Activated MnO2 Fluka ≥ 90% purity, harmful if inhaled or swallowed. Refer to MSDS for more safety precautions
Dibasic KH2PO4 Sigma-Aldrich Serious eye damage, respiratory irritant. Refer to MSDS for more safety precautions
Dichloromethane (DCM) Alfa Aesar ≥ 99.7% purity, argon packed
Rotovap Büchi accessory parts include Welch self-cleaning dry vacuum model 2027, and Neuberger KNP dry ice trap 
Bump trap Chemglass Any other instrument scientific company provider works 
Neutral Silica Gel (50-200 mM) Acros Organic/ Sorbent Technology Respiratory irritant if inhaled, refer to MSDS for more safety precautions
Inert Argon Gas Airgas Always ensure proper regulator is in place before using
Medium Porosity Sintered Funnel Glass Filter Sigma-Aldrich Any other instrument scientific company provider works
Aluminum Foil Reynolds Wrap Any other company works. Used to prevent photolytic damage towards DDM
Para-NO2 benzoic acid Sigma-Aldrich Skin contact irritant, eye irritant, respiratory irritant. Refer to MSDS for more safety precautions
Pure ethyl alcohol (200 proof) Sigma-Aldrich ≥ 99.5% purity, anhydrous. Highly flammable
Toluene Sigma-Aldrich ≥ 99.8% purity, anhydrous. Skin permeator, flammable
Ortho-xylene Sigma-Aldrich 99% purity, anhydrous. Toxic to organs and CNS. Adhere to specifications dictated within MSDS
Diphenyl diazo methane Produced in-house Respiratory irritant, refer to MSDS for more safety precautions
Corning reactor Corning Proprietary Manufactured in 2009. model number MR 09-083-1A
Stop watch Traceable Calibration Control Company Any other company that provides monitoring with laboratory grade accredidation works
Analytical balance Denver Instruments Model M-2201, or any analytical balance that has sub-milligram capabilities
Dram vials VWR 2 dram, 4 dram, and 6 dram vials 
Micropipettes Eppendorf 2-20 μL and 100-1000 μL micropipettes work
Glass pipettes VWR Any other instrument scientific company provider works
GC-MS Shimadzu GC Software associated: GC Real Time Analysis
GC vials VWR Any other providing company works
Beakers Pyrex 500 mL beakers 
Syringe pumps Sigma Aldrich Teledyne Isco Model 500D
Relief valve Swagelok Spring loaded relieve valve 
One-way valves Nupro  10 psi grade
Two-way straight valves HiP 15,000 psi grade

References

  1. Jimenez-Gonzalez, C., et al. Engineering Research Areas for Sustainable Manufacturing: A Perspective from Pharmaceutical and Fine Chemicals Manufacturers. Org Process Res Dev. 15 (4), 900-911 (2011).
  2. Constable, D. J. C., et al. Key green chemistry research areas – a perspective from pharmaceutical manufacturers. Green Chem. 9 (5), 411-420 (2007).
  3. Plutschack, M. B., Pieber, B., Gilmore, K., Seeberger, P. H. The Hitchhiker’s Guide to Flow Chemistry. Chem Rev. , (2017).
  4. Dallinger, D., Kappe, C. O. Why flow means green – Evaluating the merits of continuous processing in the context of sustainability. Curr Opin Green Sustain Chem. 7, 6-12 (2017).
  5. Movsisyan, M., et al. Taming hazardous chemistry by continuous flow technology. Chem Soc Rev. 45 (18), 4892-4928 (2016).
  6. Hessel, V., Ley, S. V. Flow Chemistry in Europe. J Flow Chem. 6 (3), 135-135 (2016).
  7. Mascia, S., et al. End-to-End Continuous Manufacturing of Pharmaceuticals: Integrated Synthesis, Purification, and Final Dosage Formation. Angew Chem Int Edit. 52 (47), 12359-12363 (2013).
  8. Newman, S. G., Jensen, K. F. The role of flow in green chemistry and engineering. Green Chem. 15 (6), 1456-1472 (2013).
  9. Watts, P., Haswell, S. J. The application of micro reactors for organic synthesis. Chem Soc Rev. 34 (3), 235-246 (2005).
  10. Wiles, C., Watts, P. Continuous flow reactors: a perspective. Green Chem. 14 (1), 38-54 (2012).
  11. Roberge, D. M., et al. Microreactor technology and continuous processes in the fine chemical and pharmaceutical industry: Is the revolution underway. Org Process Res Dev. 12 (5), 905-910 (2008).
  12. Degennaro, L., Carlucci, C., De Angelis, S., Luisi, R. Flow Technology for Organometallic-Mediated Synthesis. J Flow Chem. 6 (3), 136-166 (2016).
  13. Roberts, J. D., Watanabe, W. The Kinetics and Mechanism of the Acid-Catalyzed Reaction of Diphenyldiazomethane with Ethyl Alcohol. J Am Chem Soc. 72 (11), 4869-4879 (1950).
  14. Roberts, J. D., Watanabe, W., Mcmahon, R. E. The Kinetics and Mechanism of the Reaction of Diphenyldiazomethane and Benzoic Acid in Ethanol. J Am Chem Soc. 73 (2), 760-765 (1951).
  15. Roberts, J. D., Watanabe, W., Mcmahon, R. E. The Kinetics and Mechanism of the Reaction of Diphenyldiazomethane with 2,4-Dinitrophenol in Ethanol. J Am Chem Soc. 73 (6), 2521-2523 (1951).
  16. Roberts, J. D., Regan, C. M. Kinetics and Some Hydrogen Isotope Effects of the Reaction of Diphenyldiazomethane with Acetic Acid in Ethanol. J Am Chem Soc. 74 (14), 3695-3696 (1952).
  17. Oferrall, R. A., Kwok, W. K., Miller, S. I. Medium Effects Isotope Rate Factors + Mechanism of Reaction of Diphenyldiazomethane with Carboxylic Acids in Solvents Ethanol + Toluene. J Am Chem Soc. 86 (24), 5553 (1964).
  18. Aldrich, S. . Material Safety Data Sheet: Benzophenone Hydrazone. 4.2, 3-6 (2014).
  19. Science Lab Chemicals & Laboratory Equipment. . Material Safety Data Sheet: Manganese dioxide MSDS. , (2005).
  20. Science Lab Chemicals & Laboratory Equipment. . Material Safety Data Sheet: Potassium phosphate dibasic MSDS. , 1-5 (2005).
  21. Science Lab Chemicals & Laboratory Equipment. . Material Safety Data Sheet: Methylene Chloride MSDS. , 3-5 (2005).
  22. Smith, L. I., Howard, K. Diphenyldiazomethane. Org. Synth. 3 (351), (1955).
  23. Capot Chemical Co. . Material Safety Data Sheet, diphenyldiazomethane. 2017, (2010).
  24. Science Lab. . Material Safety Data Sheet: P-nitrobenzoic acid MSDS. , 3-5 (2005).
  25. Science Lab Chemicals & Laboratory Equipment. . Material Safety Data Sheet Ethyl Alcohol 200 proof MSDS. , (2005).
  26. Science Lab Chemicals & Laboratory Equipment. . Material Safety Data Sheet Toluene MSDS. , 4-5 (2005).
  27. Science Lab Chemicals & Laboratory Equipment. . Material Safety Data Sheet o-Xylene MSDS. , 3-5 (2005).
  28. Zheng, J., et al. Cross-Coupling between Difluorocarbene and Carbene-Derived Intermediates Generated from Diazocompounds for the Synthesis of gem-Difluoroolefins. Organic Letters. 17, 6150-6153 (2015).
  29. Reimlinger, H. 1,5-Dipolar cyclizations, I. Definition and contributions to the Imidazide/Tetrazole tautomerism. Chem. Ber. 103, 1900 (1970).
  30. Baumann, M., Garcia, A. M. R., Baxendale, I. R. Flow synthesis of ethyl isocyanoacetate enabling the telescoped synthesis of 1,2,4-triazoles and pyrrolo-[1,2-c] pyrimidines. Org Biomol Chem. 13 (14), 4231-4239 (2015).
  31. Baumann, M., Baxendale, I. R. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. Beilstein J Org Chem. 11, 1194-1219 (2015).
  32. Pastre, J. C., Browne, D. L., Ley, S. V. Flow chemistry syntheses of natural products. Chem Soc Rev. 42 (23), 8849-8869 (2013).
  33. Pirotte, G., et al. Continuous Flow Polymer Synthesis toward Reproducible Large-Scale Production for Efficient Bulk Heterojunction Organic Solar Cells. Chemsuschem. 8 (19), 3228-3233 (2015).
  34. Kumar, A., et al. Continuous-Flow Synthesis of Regioregular Poly(3-Hexylthiophene): Ultrafast Polymerization with High Throughput and Low Polydispersity Index. J Flow Chem. 4 (4), 206-210 (2014).
  35. Helgesen, M., et al. Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demands. Adv Energy Mater. 5 (9), 1401996 (2015).
  36. Grenier, F., et al. Electroactive and Photoactive Poly[lsoindigo-alt-EDOT] Synthesized Using Direct (Hetero)Arylation Polymerization in Batch and in Continuous Flow. Chem Mater. 27 (6), 2137-2143 (2015).
  37. Pollet, P., et al. Production of (S)-1-Benzyl-3-diazo-2-oxopropylcarbamic Acid tert-Butyl Ester, a Diazoketone Pharmaceutical Intermediate, Employing a Small Scale Continuous Reactor. Ind Eng Chem Res. 48 (15), 7032-7036 (2009).
  38. Flack, K., et al. Al(OtBu)(3) as an Effective Catalyst for the Enhancement of Meerwein-Ponndorf-Verley (MPV) Reductions. Org Process Res Dev. 16 (3), 1301-1306 (2012).
  39. Aponte-Guzman, J., et al. A Tandem, Bicatalytic Continuous Flow Cyclopropanation-Homo-Nazarov-Type Cyclization. Ind Eng Chem Res. 54 (39), 9550-9558 (2015).
  40. Liotta, C. L., et al. Synthetic Transformations Employing Continuous Flow. ACS- Fall 2013.Synthetic Transformations Employing Continuous Flow. , (2013).

Play Video

Citer Cet Article
Aw, A., Fritz, M., Napoline, J. W., Pollet, P., Liotta, C. L. Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with p-Nitrobenzoic Acid. J. Vis. Exp. (129), e56608, doi:10.3791/56608 (2017).

View Video