Summary

Caracterización hemodinámica invasiva del síndrome de hipertensión Portal en cirróticos ratas

Published: August 01, 2018
doi:

Summary

Aquí describimos un protocolo detallado para las mediciones invasivas de parámetros hemodinámicos como la presión portal, el flujo sanguíneo esplácnico y hemodinámica sistémica para caracterizar el síndrome de hipertensión portal en ratas.

Abstract

Se trata de un protocolo detallado que describe mediciones hemodinámicas invasivas en cirróticas ratas para la caracterización del síndrome de hipertensión portal. Hipertensión portal (PHT) debido a la cirrosis es responsable de las complicaciones más severas en pacientes con enfermedad hepática. El cuadro completo del síndrome de hipertensión portal se caracteriza por aumento de la presión portal (PP) debido a la resistencia vascular intrahepática aumentada (IHVR), circulación hiperdinámica y el flujo sanguíneo esplácnico mayor. La vasodilatación arterial esplácnica progresiva y aumento gasto cardiaco con elevada frecuencia cardiaca (FC), presión arterial baja pero caracteriza el síndrome de hipertensión portal.

Nuevas terapias se están desarrollando ese objetivo disminuir PP por o dirigida a IHVR o aumento del flujo sanguíneo esplácnico, pero pueden ocurrir efectos secundarios en la hemodinámica sistémica. Por lo tanto, una caracterización detallada del portal venoso, esplácnico y parámetros hemodinámicos sistémicos, incluyendo medición de PP, flujo de la sangre venosa portal (PVBF), flujo de sangre arterial mesentérica, presión arterial mala (mapa) y HR es necesario para la preclínica evaluación de la eficacia de nuevos tratamientos de PHT. Nuestro artículo video provee al lector con un protocolo estructurado para la realización de mediciones hemodinámicas invasivas en cirróticas ratas. En particular, describimos la cateterización de la arteria femoral y la vena porta a través de una vena ileocólica y la medida del portal venosa y arterial esplácnica flujo mediante sondas de flujo perivascular Doppler-ultrasonido. Se muestran resultados representativos de los modelos de ratón diferentes de PHT.

Introduction

PHT se define como presión arterial patológicamente creciente en el sistema venoso portal que puede causar complicaciones graves en pacientes con cirrosis como sangrado variceal y ascitis1. Mientras que la hepática (p. ej., trombosis de la vena porta) y post hepática (p. ej., síndrome de Budd-Chiari) PHT son raros, PHT intrahepática debido a la cirrosis hepática representa la causa más común de ALT2.

En la cirrosis hepática, PP se aumenta sobre todo como consecuencia de la elevada IHVR3. En etapas avanzadas, PHT se agrava por el mayor PVBF debido a mayor gasto cardiaco y disminución de la resistencia vascular sistémica y esplácnica, definiendo el síndrome de hipertensión portal4. Ley de Ohm (ΔP = Q * R) implica que el IHVR y el flujo sanguíneo es proporcional a PP5. En pacientes, la medición directa de los PP es arriesgado y no rutinariamente realizadas; por el contrario, el gradiente de presión venosa hepática (HVPG) se utiliza como una medida indirecta de PP6,7. La HVPG se calcula restando la presión venosa hepática libre (FHVP) de la presión venosa hepática cuña (WHVP), que se miden utilizando un catéter con balón colocado en la vena hepática8. La HVPG fisiológico oscila entre 1 – 5 mmHg, mientras que un HVPG ≥10 mmHg define hipertensión portal clínicamente significativa (CSPH) e indica mayor riesgo de complicaciones relacionadas con el Alt, como sangrado por várices, ascitis y encefalopatía hepática9 . Aunque el PP (es decir, HVPG) es el parámetro más relevante para severidad PHT, información sobre otros componentes de PHT, incluyendo la gravedad de la circulación hiperdinámica (HR, mapa), flujo de sangre arterial esplácnica/mesentérica y IHVR, son fundamentales para obtener una comprensión global de lo distinto mecanismo subyacente de PHT.

Así, en contraste con mediciones indirectas de PP en los seres humanos, la metodología introducida para las ratas ofrece la ventaja de una medida directa de PP y permite la grabación de parámetros hemodinámicas adicionales caracterizan el síndrome de hipertensión portal. Además, la medida directa del PP es una excelente lectura integradora de la cantidad de fibrosis hepática (un determinante de IHVR) y supera algunas limitaciones de cuantificación de la fibrosis relacionada con errores de muestreo de tejido del hígado.

Los modelos de roedores más comúnmente utilizados de PHT cirrótico incluyen ligadura quirúrgica del conducto biliar (BDL), toxina-inducida por la lesión del higado (es decir, por tetracloruro de carbono, tioacetamida o administración de Dimetilnitrosamina) y hígado metabólica inducida por la dieta modelos de la enfermedad. Prehepatic Alt (no cirróticos) puede ser inducida por parcial de la vena porta ligadura (PPVL)10.

Pequeños roedores están bien adaptados para el método presentado, incluyendo ratones, hámsters, ratas o conejos y se asocian con relativamente bajos costos de mantenimiento. A pesar de todas las evaluaciones hemodinámicas son factibles de realizar en ratones, la mejor exactitud y reproducibilidad de los resultados se ven con las ratas o los roedores más grandes debido a la evidente ventaja del tamaño del animal. Además, micro-instrumentos específicos y dispositivos son necesarios para obtener los parámetros hemodinámicos similares en ratones. Por último, las ratas son más robustas con mortalidad y baja morbilidad asociada y por lo tanto, la deserción es probable que baje en ratas que en los ratones.

La metodología presentada es adecuada para la evaluación de tratamientos específicos de enfermedad hepática (es decir, drogas anti-fibróticas o antiinflamatorias) o farmacológica novela acerca de influencia el tono vascular y endotelial biología; y así, probable efecto parámetros hemodinámicos en alt.

Protocol

Todos los métodos aquí descritos han sido aprobados por el Comité de ética de la Universidad médica de Viena y el Ministerio austríaco de ciencia, investigación y economía (BMWFW). Procedimientos deben ser realizado en condiciones asépticas en una sala de operación o similar limpiar área de trabajo ya que las mediciones hemodinámicas representan las intervenciones quirúrgicas. Por lo general, se recomienda trabajar en condiciones estériles. Cuando se utiliza una anestesia inhalatoria, considerar una ventila…

Representative Results

Dependiendo del modelo animal y la gravedad de la enfermedad del hígado, el grado de PHT y la gravedad del síndrome de hipertensión portal es diferente (figura 7). El modelo BDL causa cirrosis biliar debido a la colestasis. En consecuencia, PP aumenta con el tiempo y un hiperdinámico circulación desarrolla, como se ha visto un aumento de la HR y disminución del mapa. En los animales cirrótico…

Discussion

PP es el parámetro de resultado principal para la evaluación del síndrome de hipertensión portal y refleja la severidad de la cirrosis subyacente. Deposición de la matriz (es decir, fibrosis) y la vasoconstricción sinusoidal (debido al aumento de expresión hepática de vasoconstrictores y disminución de respuesta a los vasodilatadores) causan mayor IHVR. La importancia de la PP y su impacto en la enfermedad hepática crónica se ha demostrado en múltiples preclínicos11,</su…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Agradecemos a los veterinarios, enfermeras y cuidadores de animales en el centro de investigación biomédica por su continuo apoyo en nuestros proyectos de investigación. Los autores reconocen la importante entrada de todos los revisores del presente Protocolo. Algunas de las investigaciones fue financiado por el premio”joven Ciencia” de la Sociedad austríaca de Gastroenterología y Hepatología (ÖGGH) PS y el “Skoda Award” de la Sociedad austríaca de medicina interna TR.

Materials

Instruments
LabChart 7 Pro software ADInstruments, Colorado Springs, CO, USA  - Software
ML870 PowerLab 8/30 ADInstruments, Colorado Springs, CO, USA  - Electronic multichannel recorder
MLT0380/D ADInstruments, Colorado Springs, CO, USA  - Pressure transducer (x2: for Portal Pressure and Arterial Pressure)
ML112 Quad Bridge Amplifier ADInstruments, Colorado Springs, CO, USA  - Bridge amplifier
TS420 Transonic Systems Inc., Ithaca, NY, USA  - Flowmeter module
Biological Research Apparatus 7025 UGO BASILE S.R.L., Comerio, Italy  - Ventilator
Vapor 2000 Dräger Medical AG & Co. KG, Lübeck, Germany  - Isofluran Vaporizer
Perivascular probes (rat) for Transonic systems (Superior Mesenteric Artery) Transonic Systems Inc., Ithaca, NY, USA #MA1PRB Ultrasonic flow probe (1mm)
Perivascular probes (rat) for Transonic systems (Portal Vein) Transonic Systems Inc., Ithaca, NY, USA #MA2PSB Ultrasonic flow probe (2mm)
1st for intubation & 2nd for clean skin incisions  -  - Mayo scissor [x2]
Metzenbaum scissor  -  -  -
Cuticle scissor  -  -  -
e.g. Adson Brown tissue forceps  -  - Tissue Forceps
High precision 45° angle broad point forceps [x2]  -  -  -
Hemostat [x4]  -  -  -
e.g. Mikulicz peritoneal clamp  -  - Curved clamp
e.g. Dieffenbach clamp  -  - Micro clamp
e.g. micro spatula with flat ends, width 4 mm,  -  - Micro metal spatula
for transbuccal suture at intubation  -  - Needle holder
Scalpel grip  -  -  -
selfmade  -  - Intubation desk
blut, flexible and with a suitable diameter for arterial cannula and venflow  -  - Blunt steel wire
modified arterial line 20G with Flowstich Becton Dickinson, Farady Road, Swindon, UK #682245 Arterial line
Heating pad  -  -  -
Rectal temerature probe  -  -  -
Saline heater  -  -  -
Laryngoscope (specific for animal size, e.g. rat)  -  -  -
Inductionbox for inhalation anesthesia  -  -  -
Scale (able to measure mg)  -  -  -
Hair clipper  -  -  -
Name Company Catalog Number Comments
Consumables
e.g. modified BD Venflon Pro Safety 14GA Becton Dickinson Infusion Therapy, AB, SE251 06 Helsingborg, Sweden #393230 Peripheral venous catheter (14G)
Fine-Bore Polyethylene Tubing, ID 0.58mm, OD 0.96mm, Portex, Smiths Medical International Ltd., Kent, UK #800/100/200 Catheter tube (PE-50)
e.g. Omnifix-F Solo B. Braun Melsungen AG, Melsungen, Germany #9161406V Syringe 1mL
e.g. Injekt Solo B. Braun Melsungen AG, Melsungen, Germany #4606051V Syringe 5mL
e.g. Injekt Solo B. Braun Melsungen AG, Melsungen, Germany #4606205V Syringe 20mL
e.g. BD Microlance 3, 18G – 1 1/2" Becton Dickinson S.A., Fraga, Spain #304622 Cannula (18G)
e.g. BD Microlance 3, 23G – 1" Becton Dickinson S.A., Fraga, Spain #300800 Cannula (23G)
e.g. BD Microlance 3, 30G – 1/2" Becton Dickinson S.A., Fraga, Spain #304000 Cannula (30G)
e.g. Leukoplast S BSN medical GmbH, Hamburg,  Germany #47619-00 Adhesive tape
e.g. Gazin RK Mullkompressen (18x8cm) Lohmann & Rauscher, Vienna, Austria #10972 Gauze compress (small)
e.g. Gazin RK Mullkompressen (5x5cm) Lohmann & Rauscher, Vienna, Austria #10961 Gauze compress (big)
Silk Braided black, USP 4/0, EP 1.5 SMI AG, St. Vith, Belgium #2021-04 Suture (Silk 4/0, EP 1.5)
e.g. Mersilk, 2-0 (3 Ph. Eur.), PS-1 Prime Johnson & Johnson Medical GmbH – Ethicon Deutschland, Germany #EH7552 Transbuccal suture
e.g. Cottonbuds (2.2mm, 15cm) Paul Hartmann AG, Heidenheim, Germany #967936 Cotton buds
e.g. Vue Ultrasoundgel Optimum Medical Limited, UK #1157 Ultrasound gel
e.g. Glubran 2 Gem srl, Viareggio, Italy #G-NB2-50 Tissue glue
e.g. Surgical scalpell knife Nr. 10 – carbon steel Swann-Morton, England, B.S. #202 Scalpel Knife
Heparin, 5000 i.E./mL (Natriumheparin) Medicamentum Pharma GmbH, Allerheiligen im Mürztal, Austria  - Heparin
Florane Aesica Queenborough Ltd., Queenborough, UK  - Isoflurane
OeloVital (5g) Fresenius Kabi Austira Gmbh, Graz, Austria  - Eye gel
Ketasol aniMedica GmbH, Senden-Bösensell, Germany  - Ketamine
Rompun Bayer Austria Ges.m.b.H., Vienna, Austria  - Xylazine
Xylocain 10% Pumpspray AstraZeneca Österreich GmbH, Vienna, Austria  - Lidocaine pump spray
Dipidolor Jansen-Cilag Pharma GmbH, Vienna, Austria  - Piritramide
NaCl 0.9% Fresenius, 1L Fresenius Kabi Austira GmbH, Graz, Austria #13LIP132 Physiological saline solution

References

  1. Ripoll, C., et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology. 133 (2), 481-488 (2007).
  2. Bosch, J., Groszmann, R. J., Shah, V. H. Evolution in the understanding of the pathophysiological basis of portal hypertension: How changes in paradigm are leading to successful new treatments. J Hepatol. 62, S121-S130 (2015).
  3. Blachier, M., Leleu, H., Peck-Radosavljevic, M., Valla, D. C., Roudot-Thoraval, F. The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol. 58 (3), 593-608 (2013).
  4. Colle, I., Geerts, A. M., Van Steenkiste, C., Van Vlierberghe, H. Hemodynamic Changes in Splanchnic Blood Vessels in Portal Hypertension. Advances in Integrative Anatomy and Evolutionary Biology. 291 (6), 699-713 (2008).
  5. Laleman, W., Van Landeghem, L., Wilmer, A., Fevery, J., Nevens, F. Portal hypertension: from pathophysiology to clinical practice. Liver International. 25 (6), 1079-1090 (2005).
  6. Franchis, R. d. . Updating Consensus in Portal Hypertension: Report of the Baveno III Consensus Workshop on definitions, methodology and therapeutic strategies in portal hypertension. Journal of Hepatology. 33 (5), 846-852 (2000).
  7. Zardi, E. M., Di Matteo, F. M., Pacella, C. M., Sanyal, A. J. Invasive and non-invasive techniques for detecting portal hypertension and predicting variceral bleeding in cirrhosis: a review. Annals of medicine. 46 (1), 8-17 (2014).
  8. Kumar, A., Sharma, P., Sarin, S. K. Hepatic venous pressure gradient measurement: time to learn. Indian J Gastroenterol. 27 (2), 74-80 (2008).
  9. Tsochatzis, E. A., Bosch, J., Burroughs, A. K. Liver cirrhosis. Lancet. 383 (9930), 1749-1761 (2014).
  10. Abraldes, J. G., Pasarín, M., García-Pagán, J. C. Animal models of portal hypertension. World Journal of Gastroenterology : WJG. 12 (41), 6577-6584 (2006).
  11. Reiberger, T., et al. Sorafenib attenuates the portal hypertensive syndrome in partial portal vein ligated rats. Journal of Hepatology. 51 (5), 865-873 (2009).
  12. Schwabl, P., et al. Pioglitazone decreases portosystemic shunting by modulating inflammation and angiogenesis in cirrhotic and non-cirrhotic portal hypertensive rats. Journal of Hepatology. 60 (6), 1135-1142 (2014).
  13. Reiberger, T., et al. Nebivolol treatment increases splanchnic blood flow and portal pressure in cirrhotic rats via modulation of nitric oxide signalling. Liver International. 33 (4), 561-568 (2013).
  14. Schwabl, P., et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. Journal of Hepatology. 66 (4), 724-733 (2017).
  15. Mandorfer, M., et al. Sustained virologic response to interferon-free therapies ameliorates HCV-induced portal hypertension. J Hepatol. 65 (4), 692-699 (2016).
  16. Schwabl, P., et al. Interferon-free regimens improve portal hypertension and histological necroinflammation in HIV/HCV patients with advanced liver disease. Aliment Pharmacol Ther. 45 (1), 139-149 (2017).
  17. Reiberger, T., Mandorfer, M. Beta adrenergic blockade and decompensated cirrhosis. Journal of Hepatology. 66 (4), 849-859 (2017).
  18. Reiberger, T., et al. Carvedilol for primary prophylaxis of variceal bleeding in cirrhotic patients with haemodynamic non-response to propranolol. Gut. 62 (11), 1634-1641 (2013).
  19. Reiberger, T., et al. Austrian consensus guidelines on the management and treatment of portal hypertension (Billroth III). Wiener klinische Wochenschrift. 129 (3), 135-158 (2017).
  20. de Franchis, R. Expanding consensus in portal hypertension. Journal of Hepatology. 63 (3), 743-752 (2015).
  21. Pinter, M., et al. The effects of sorafenib on the portal hypertensive syndrome in patients with liver cirrhosis and hepatocellular carcinoma – a pilot study. Alimentary Pharmacology & Therapeutics. 35 (1), 83-91 (2012).
  22. Schwabl, P., Laleman, W. Novel treatment options for portal hypertension. Gastroenterol Rep (Oxf). 5 (2), 90-103 (2017).
  23. Klein, S., Schierwagen, R., Uschner, F., Trebicka, J. . Mouse and Rat Models of Induction of Hepatic Fibrosis and Assessment of Portal Hypertension. , (2017).
  24. Russell, W. M. S., Burch, R. L. . The Principles of Humane Experimental Technique. , (1959).
  25. Langhans, W., Myrtha, A., Riediger, T., Lutz, T. A. . Routine animal use procedures. , (2016).
  26. Animal Care and Use Program. . Rat and Mouse anesthesia and analgesia: Formulary and General Drug Information. , (2016).
  27. Davis, J. A. . Current Protocols in Neuroscience. , (2001).
  28. Albrecht, M., Henke, J., Tacke, S., Markert, M., Guth, B. Effects of isoflurane, ketamine-xylazine and a combination of medetomidine, midazolam and fentanyl on physiological variables continuously measured by telemetry in Wistar rats. BMC Veterinary Research. 10 (1), 198 (2014).
  29. Redfors, B., Shao, Y., Omerovic, E. Influence of anesthetic agent, depth of anesthesia and body temperature on cardiovascular functional parameters in the rat. Laboratory Animals. 48 (1), 6-14 (2014).
  30. Becker, K., et al. . Statement on anesthesia methodologies: Recommondations on anaesthesia methodologies for animal experimentation in rodents and rabbits. , (2016).
check_url/fr/57261?article_type=t

Play Video

Citer Cet Article
Königshofer, P., Brusilovskaya, K., Schwabl, P., Podesser, B. K., Trauner, M., Reiberger, T. Invasive Hemodynamic Characterization of the Portal-hypertensive Syndrome in Cirrhotic Rats. J. Vis. Exp. (138), e57261, doi:10.3791/57261 (2018).

View Video