Summary

Protokoll for MicroRNA overføring til voksen Ben margtransplantasjon-avledet blodkreft stamceller aktivere cellen Engineering kombinert med magnetiske målretting

Published: June 18, 2018
doi:

Summary

Denne protokollen illustrerer en sikker og effektiv fremgangsmåte for å endre CD133+ blodkreft stamceller. Presentert ikke-viral, magnetiske polyplex-basert tilnærming kan gi grunnlag for optimalisering av terapeutiske stamcelleforskningen effekter så vel som for overvåking administrert celle produktet via magnetisk resonans imaging.

Abstract

Mens CD133+ blodkreft stamceller (SCs) har vist seg for å gi høyt potensial innen regenerativ medisin, deres lav oppbevaring priser etter injeksjon i skadet vev som observerte massiv celle dødelighet føre til svært begrenset terapeutisk effekt. For å overvinne disse begrensningene, forsøkte vi å etablere en ikke-viral basert protokoll egnet cellen engineering før sin administrasjon. Endring av menneskelig CD133+ uttrykke SCs benytter microRNA (miR) lastet magnetiske polyplexes ble behandlet med hensyn til opptak effektivitet og sikkerhet, samt målretting potensialet i cellene. Stole på våre protokoll, kan vi oppnå høy miR opptak priser for 80 – 90%, mens CD133+ stamcelleforskningen egenskaper forbli upåvirket. Videre tilbyr disse endrede cellene muligheten for magnetisk målretting. Vi beskriver her en trygg og svært effektiv fremgangsmåte for endring av CD133+ SCs. Vi forventer denne tilnærmingen å gi en standardteknologi for optimalisering av terapeutiske stamcelleforskningen effekter og overvåking av administrert celle produktet via magnetisk resonans imaging (MRI).

Introduction

CD133+ SCs representerer en heterogen stammen og stamfar celle befolkning med lovende potensial for regenerativ medisin. Deres blodkreft endothelial og myogenic differensiering potensielle1,2,3 gjør CD133+ celler, f.ekså bidra til neovascularization prosesser gjennom differensiering i nylig dannet fartøy og aktivering av pro-angiogenic signalering av paracrine mekanismer4,5,6,7.

Til tross for sitt høye potensial i mer enn 30 godkjente kliniske studier (ClinicalTrails.gov), er terapeutiske utfallet fremdeles under kontroversiell diskusjon4. Faktisk er en klinisk anvendelse av SCs hindret av lav oppbevaring i organ for interesse og massiv første celle død5,8,9. Ekstra prosjektering av CD133+ SCs før transplantasjon kunne hjelpe overvinne disse utfordringene.

En forutsetning for en effektiv cellen terapi ville være reduksjon av massiv første celledød å forbedre engraftment av terapeutiske relevante celler10. Aktuelle studier vist en enorm celle tap av 90-99% i svært perfused organer som hjernen og hjertet under den første 1-2 h, uavhengig av hvilken transplantert cellen eller programmet ruten11,12,13 ,14,15,16,17,18,19,20,21. SC merking bruker magnetisk nanopartikler (MNPs) gjør en nyskapende ikke-invasiv strategi til målcellene til området av interesse22,23,24,25,26 og samtidig gir cellen overvåking MRI27 og magnetiske partikler imaging (MPI). Den mest effektive i vivo studier bruk magnetisert celle målretting brukte celle oppbevaring etter lokal administrasjon fremfor celle veiledning etter intravenøs injeksjon23,24,28 . Derfor laget vårt en levering system som består av superparamagnetiske jernoksid nanopartikler29. Med denne teknikken, CD133+ SCs og menneskelige umbilical blodåre endotelceller (HUVECs) kan effektivt rettes, som demonstrert av i vitro forsøk30,31.

En annen hurdle SC terapi er fiendtlig inflammatorisk miljøet av berørte vev etter transplantasjon, som bidrar til den første celle død32. I tillegg til flere pre condition studier var anvendelse av terapeutiske relevante miRs testet33; Det har vært vellykket demonstrert at anti-apoptotisk miRs hemmer apoptose i vitro og forbedre celle engraftment i vivo33. Disse små molekyler, består av 20-25 nukleotider, spiller en avgjørende rolle som posttranscriptional modulatorer av messenger RNAs (mRNAs), og dermed påvirke stamcelleforskningen skjebne og atferd34. Videre eksogene innføring av miRs unngå uønskede stabil integrering i vert genomet34.

Nåværende forsøk for effektiv introduksjon om nukleinsyrer (NAs) i primære SCs er hovedsakelig basert på rekombinant virus8,35. Til tross for høy transfection effektiviteten presenterer rekombinant virus manipulasjon en stor utfordring for en benken til sengen oversettelse, f.eks, ukontrollerbare genuttrykk, virusets, immunogenisitet og insertional mutagenese35 ,36. Derfor er ikke-viral leveringssystemer som polymer-baserte konstruksjoner avgjørende for å utvikle. Blant dem, polyethylenimine (PEI) representerer en gyldig levering kjøretøy tilbyr fordeler for miRs NA kondens å beskytte fra fornedrelse, mobilnettet opptak, og intracellulær utgivelse gjennom endosomal rømme37,38. Videre demonstrert miR-PEI komplekser en høy biocompatibility i kliniske studier39. Derfor levering systemet består av en biotinylated forgrenet 25 kDa PEI bundet til en streptavidin-belagt MNP kjerner30,31,40.

I dette manuskriptet presenterer vi en omfattende protokoll som beskriver (i) manuell isolering av CD133+ SC fra human benmarg (BM) donasjon med en detaljert karakterisering av SC produktet og (ii) en effektiv og skånsom transfection strategi for en magnetisk ikke-viral polymer-baserte leveringssystem for genteknologi av CD133+ SCs benytter miRs. CD133+ SCs er isolert og magnetisk beriket fra menneskelige sternal BM aspirates bruker en overflate antistoff-baserte magnetiske-aktivert celle sortering (Mac) system. Etterpå er celle levedyktigheten samt celle renhet analysert ved hjelp av flowcytometri. Deretter miR/PEI/MNP komplekser er forberedt og CD133+ SCs er transfekterte. 18 h etter hva, opptak effektiviteten og virkningen av transfection på SC markør uttrykk og celle levedyktighet analyseres. Videre utføres evaluering av intracellulær fordelingen av transfection komplekse forbindelser med firefargers merking og strukturert belysning mikroskopi (SIM).

Protocol

Sternal menneskelige BM for cellen aisolering er Hentet fra informert givere, som ga sitt skriftlige samtykke å bruke sine eksempler for forskning etter erklæring av Helsinki. Den etiske komiteen av universitetet i Rostock har godkjent presentert studien (reg. nr A 2010 23, langvarig i 2015). 1. celle forberedelse Merk: Bruk heparin natrium (250 IU/mL BM) å hindre koagulering for BM eksamen. CD133+ SC isolasjon Utar…

Representative Results

Presentert protokollen beskriver en manuell isolasjon og magnetiske anriking av menneskelig BM-avledet CD133+ SCs med en påfølgende virus uavhengig celle engineering strategi, som en ikke-invasiv teknologi i vitro celle manipulasjon og i vivo avlytting verktøyet. Denne tre-trinns aisolering teknologien tillater en separasjon av MNCs fra det pre-oversikten sternal BM gjennom tetthet gradert sentrif…

Discussion

De siste årene, CD133+ SCs har dukket opp som en lovende celle befolkningen for SC-basert behandling som dokumentert av flere fase I, II og III kliniske studier43,44,45,46, 47 , 48 , 49 , 50 , 51 , <…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Dette arbeidet ble støttet av Federal Utdannings og forskning Tyskland (FKZ 0312138A og FKZ 316159), til delstaten Mecklenburg-Vorpommern med EU Structural Funds (ESF/IVWM-B34-0030/10 og ESF/IVBM-B35-0010/12) og DFG (DA1296/2-1), den Tyske Heart Foundation (F/01/12), BMBF (VIP + 00240) og fuktig Foundation. I tillegg støtter F.H. og PM av FORUN programmet i Rostock University Medical Centre (889001).

Materials

7-AAD BD Biosciences 559925
Acetic Acid with Methylene Blue Stemcell Technologies 7060 3%
anti-CD133/2-PE (clone: 293C3) Miltenyi Biotec GmbH 130-090-853
anti-CD34-FITC (clone: AC136) Miltenyi Biotec GmbH 130-081-001
anti-CD45-APC-H7 (clone: 2D1) BD Biosciences 560178
rhodamine dye; Atto 565 dye conjugated to biotin ATTO-TEC GmbH AD 565-71
BD FACS LSRII flow cytometer BD Biosciences
BD FACSDiva Software 6.1.2 BD Biosciences
BSA Sigma-Aldrich GmbH A7906
CD133 antibody-linked superparamagnetic iron dextran particles; CD133 MicroBead Kit Miltenyi Biotec GmbH 130-097-049
collagenase B Roche Diagnostics GmbH 11088831001
counting chamber Paul Marienfeld GmbH & Co. KG
Cyanine 3 dye labelled precursor miR; Cy3 Dye-Labeled Pre-miR Negative Control #1 Ambion AM17120
Cyanine 5 dye miR labelling kit; Cy5 dye Label IT miRNA Labeling Kit Mirus Bio MIR 9650
DNAse I Roche Diagnostics GmbH 10104159001 (100 U/mL)
ELYRA PS.1 LSM 780 confocal microscope Carl Zeiss Jena GmbH
FcR Blocking Reagent, human Miltenyi Biotec GmbH 130-059-901
bright green protein labeling kit; Oregon Green 488 Protein Labeling Kit Thermo Fisher Scientific O10241
aqueous mounting medium; Fluoroshield Sigma-Aldrich GmbH F6182
density gradient centrifugation tube; Leukosep Centrifuge Tube Greiner Bio-One 89048-932
MACS magnet holder; MACS MultiStand Miltenyi Biotec GmbH 130-042-303
MACS pre-separation filter Miltenyi Biotec GmbH 130-041-407 30 µm
MACS separation column (MS / LS) Miltenyi Biotec GmbH 130-042-201 / 130-042-401
MACS permanent magnet; MACS Separator Miltenyi Biotec GmbH 130-042-302
Millex-HV PVDF Filter Merck SLHV013SL 0.45 μm
mouse IgG 2b-PE Miltenyi Biotec GmbH 130-092-215
amine reactive dye; Near-IR LIVE/DEAD Fixable Dead Cell Stain Kit Thermo Fisher Scientific L10119
human lymphocyte separating medium; Pancoll Pan Biotech GmbH P04-60500 density: 1.077 g/mL
PBS Pan Biotech GmbH P04-53500 without Ca and Mg
PEI Sigma-Aldrich GmbH 408727 branched; 25 kDa
Penicillin/Streptomycin Thermo Fisher Scientific 15140122 100 U/mL, 100 μg/mL
PFA Merck Schuchardt OHG 1040051000
unlabelled precursor miR; Pre-miR miRNA Precursor Negative Control #1 Ambion AM17110
RBC lysis buffer eBioscience 00-4333-57
RNAse decontamination solution; RNaseZap Thermo Fisher Scientific AM9780
human lymphocyte medium; Roswell Park Memorial Institute (RPMI) 1640 medium Pan Biotech GmbH P04-16500
recombinant human cytokine supplement; StemSpan CC100 Stemcell Technologies 2690
serum-free haematopoietic cell expansion medium; StemSpan H3000 Stemcell Technologies 9800
Streptavidin MagneSphere Paramagnetic Particles Promega Corporation Z5481
Trypan Blue solution Sigma-Aldrich GmbH T8154 0.4 %
UltraPure EDTA Thermo Fisher Scientific 15575020 0.5 M; pH 8.0
ZEN2011 software Carl Zeiss Jena GmbH
NanoDrop 1000 Spectrophotometer Thermo Fisher Scientific
Sonorex RK 100 SH sonicating water bath Bandelin electronic Ultrasonic nominal output: 80 W; Ultrasonic frequency: 35 kHz

References

  1. Meregalli, M., Farini, A., Belicchi, M., Torrente, Y. CD133(+) cells isolated from various sources and their role in future clinical perspectives. Expert opinion on biological therapy. 10 (11), 1521-1528 (2010).
  2. Lee, S., Yoon, Y. -. S. Revisiting cardiovascular regeneration with bone marrow-derived angiogenic and vasculogenic cells. British journal of pharmacology. 169 (2), 290-303 (2013).
  3. Beksac, M., Preffer, F. Is it time to revisit our current hematopoietic progenitor cell quantification methods in the clinic?. Bone marrow transplantation. 47 (11), 1391-1396 (2012).
  4. Bongiovanni, D., et al. The CD133+ cell as advanced medicinal product for myocardial and limb ischemia. Stem cells and development. 23 (20), 2403-2421 (2014).
  5. Wang, X., et al. The Clinical Status of Stem Cell Therapy for Ischemic Cardiomyopathy. Stem cells international. 2015, 135023 (2015).
  6. Ma, N., et al. Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: Bone marrow vs. cord blood-derived cells. Cardiovascular research. 71 (1), 158-169 (2006).
  7. Rafii, S., Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature medicine. 9 (6), 702-712 (2003).
  8. Wang, D., Gao, G. State-of-the-art human gene therapy: part I. Gene delivery technologies. Discovery medicine. 18 (97), 67-77 (2014).
  9. Sart, S., Ma, T., Li, Y. Preconditioning stem cells for in vivo delivery. BioResearch open access. 3 (4), 137-149 (2014).
  10. Liu, J., et al. Early stem cell engraftment predicts late cardiac functional recovery: preclinical insights from molecular imaging. Circulation. Cardiovascular imaging. 5 (4), 481-490 (2012).
  11. Lang, C., et al. In vivo comparison of the acute retention of stem cell derivatives and fibroblasts after intramyocardial transplantation in the mouse model. European journal of nuclear medicine and molecular imaging. 41 (12), 2325-2336 (2014).
  12. Goussetis, E., et al. Intracoronary infusion of CD133+ and CD133-CD34+ selected autologous bone marrow progenitor cells in patients with chronic ischemic cardiomyopathy: cell isolation, adherence to the infarcted area, and body distribution. Stem cells. 24 (10), 2279-2283 (2006).
  13. Caveliers, V., et al. In vivo visualization of 111In labeled CD133+ peripheral blood stem cells after intracoronary administration in patients with chronic ischemic heart disease. Q J Nucl Med Mol Imaging. 51 (1), 61-66 (2007).
  14. Terrovitis, J. V., Smith, R. R., Marbán, E. Assessment and optimization of cell engraftment after transplantation into the heart. Circulation research. 106 (3), 479-494 (2010).
  15. Rosado-de-Castro, P. H., et al. Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regenerative medicine. 8 (2), 145-155 (2013).
  16. Kang, W. J., Kang, H. -. J., Kim, H. -. S., Chung, J. -. K., Lee, M. C., Lee, D. S. Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. Journal of nuclear medicine official publication, Society of Nuclear Medicine. 47 (8), 1295-1301 (2006).
  17. Blocklet, D., et al. Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem cells. 24 (2), 333-336 (2006).
  18. Penicka, M., et al. One-day kinetics of myocardial engraftment after intracoronary injection of bone marrow mononuclear cells in patients with acute and chronic myocardial infarction. Heart (British Cardiac Society). 93 (7), 837-841 (2007).
  19. Schächinger, V., et al. Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation. 118 (14), 1425-1432 (2008).
  20. Dedobbeleer, C., et al. Myocardial homing and coronary endothelial function after autologous blood CD34+ progenitor cells intracoronary injection in the chronic phase of myocardial infarction. Journal of cardiovascular pharmacology. 53 (6), 480-485 (2009).
  21. Musialek, P., et al. Randomized transcoronary delivery of CD34(+) cells with perfusion versus stop-flow method in patients with recent myocardial infarction: Early cardiac retention of (m)Tc-labeled cells activity. Journal of nuclear cardiology official publication of the American Society of Nuclear Cardiology. 18 (1), 104-116 (2011).
  22. Kyrtatos, P. G., et al. Magnetic tagging increases delivery of circulating progenitors in vascular injury. JACC. Cardiovascular interventions. 2 (8), 794-802 (2009).
  23. Vandergriff, A. C., et al. Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials. 35 (30), 8528-8539 (2014).
  24. Huang, Z., et al. Magnetic targeting enhances retrograde cell retention in a rat model of myocardial infarction. Stem cell research & therapy. 4 (6), 149 (2013).
  25. Yanai, A., et al. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell transplantation. 21 (6), 1137-1148 (2012).
  26. Arbab, A. S., Jordan, E. K., Wilson, L. B., Yocum, G. T., Lewis, B. K., Frank, J. A. In vivo trafficking and targeted delivery of magnetically labeled stem cells. Human gene therapy. 15 (4), 351-360 (2004).
  27. Cores, J., Caranasos, T. G., Cheng, K. Magnetically Targeted Stem Cell Delivery for Regenerative Medicine. Journal of functional biomaterials. 6 (3), 526-546 (2015).
  28. Cheng, K., et al. Magnetic enhancement of cell retention, engraftment, and functional benefit after intracoronary delivery of cardiac-derived stem cells in a rat model of ischemia/reperfusion. Cell transplant. 21 (6), 1121-1135 (2012).
  29. Li, W., et al. Enhanced thoracic gene delivery by magnetic nanobead-mediated vector. The journal of gene medicine. 10 (8), 897-909 (2008).
  30. Müller, P., et al. Magnet-Bead Based MicroRNA Delivery System to Modify CD133+ Stem Cells. Stem cells international. 2016, 7152761 (2016).
  31. Voronina, N., et al. Non-viral magnetic engineering of endothelial cells with microRNA and plasmid-DNA-An optimized targeting approach. Nanomedicine nanotechnology, biology, and medicine. , (2016).
  32. Noort, W. A., et al. Mesenchymal stromal cells to treat cardiovascular disease: strategies to improve survival and therapeutic results. Panminerva Med. 52 (1), 27-40 (2010).
  33. Jakob, P., Landmesser, U. Role of microRNAs in stem/progenitor cells and cardiovascular repair. Cardiovascular Research. 93 (4), 614-622 (2012).
  34. Sen, C. K. MicroRNAs as new maestro conducting the expanding symphony orchestra of regenerative and reparative medicine. Physiological genomics. 43 (10), 517-520 (2011).
  35. Papapetrou, E. P., Zoumbos, N. C., Athanassiadou, A. Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects. Gene therapy. 12, S118-S130 (2005).
  36. Chira, S., et al. Progresses towards safe and efficient gene therapy vectors. Oncotarget. 6 (31), 30675-30703 (2015).
  37. Hobel, S., Aigner, A. Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology. 5 (5), 484-501 (2013).
  38. Villate-Beitia, I., Puras, G., Zarate, J., Agirre, M., Ojeda, E., Pedraz, J. L., Hashad, D. First Insights into Non-invasive Administration Routes for Non-viral Gene Therapy. Gene Therapy – Principles and Challenges. , (2015).
  39. Cubillos-Ruiz, J. R., Sempere, L. F., Conejo-Garcia, J. R. Good things come in small packages: Therapeutic anti-tumor immunity induced by microRNA nanoparticles. Oncoimmunology. 1 (6), 968-970 (2012).
  40. Schade, A., et al. Magnetic nanoparticle based nonviral microRNA delivery into freshly isolated CD105(+) hMSCs. Stem Cells Int. 2014, 197154 (2014).
  41. Sutherland, D. R., Anderson, L., Keeney, M., Nayar, R., Chin-Yee, I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International society of hematotherapy and graft engineering. Journal of hematotherapy. 5 (3), 213-226 (1996).
  42. Voronina, N., et al. Preparation and in vitro characterization of magnetized mir-modified endothelial cells. Journal of visualized experiments. (123), (2017).
  43. Stamm, C., et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease:Safety and efficacy studies. The journal of thoracic and cardiovascular surgery. 133 (3), 717-725 (2007).
  44. King, A., et al. REpeated AutoLogous Infusions of STem cells In Cirrhosis (REALISTIC): A multicentre, phase II, open-label, randomised controlled trial of repeated autologous infusions of granulocyte colony-stimulating factor (GCSF) mobilised CD133+ bone marrow stem cells in patients with cirrhosis. A study protocol for a randomised controlled trial. BMJ open. 5 (3), e007700 (2015).
  45. Martinez, H. R., et al. Stem cell transplantation in amyotrophic lateral sclerosis patients: methodological approach, safety, and feasibility. Cell transplantation. 21 (9), 1899-1907 (2012).
  46. Jimenez-Quevedo, P., et al. Selected CD133(+) progenitor cells to promote angiogenesis in patients with refractory angina: final results of the PROGENITOR randomized trial. Circulation research. 115 (11), 950-960 (2014).
  47. Raval, A. N., et al. Bilateral administration of autologous CD133+ cells in ambulatory patients with refractory critical limb ischemia: lessons learned from a pilot randomized, double-blind, placebo-controlled trial. Cytotherapy. 16 (12), 1720-1732 (2014).
  48. Andreone, P., et al. Reinfusion of highly purified CD133+ bone marrow-derived stem/progenitor cells in patients with end-stage liver disease: A phase I clinical trial. Digestive and liver disease. 47 (12), 1059-1066 (2015).
  49. Arici, V., et al. Autologous immuno magnetically selected CD133+ stem cells in the treatment of no-option critical limb ischemia: clinical and contrast enhanced ultrasound assessed results in eight patients. Journal of translational medicine. 13, 342 (2015).
  50. Zali, A., et al. Intrathecal injection of CD133-positive enriched bone marrow progenitor cells in children with cerebral palsy: feasibility and safety. Cytotherapy. 17 (2), 232-241 (2015).
  51. Al-Zoubi, A., et al. Transplantation of purified autologous leukapheresis-derived CD34+ and CD133+ stem cells for patients with chronic spinal cord injuries: long-term evaluation of safety and efficacy. Cell transplantation. 23, S25-S34 (2014).
  52. Isidori, A., et al. Positive selection and transplantation of autologous highly purified CD133(+) stem cells in resistant/relapsed chronic lymphocytic leukemia patients results in rapid hematopoietic reconstitution without an adequate leukemic cell purging. Biology of blood and marrow transplantation. 13 (10), 1224-1232 (2007).
  53. Nasseri, B. A., et al. Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial. European heart journal. 35 (19), 1263-1274 (2014).
  54. Steinhoff, G., et al. Cardiac Function Improvement and Bone Marrow Response -: Outcome Analysis of the Randomized PERFECT Phase III Clinical Trial of Intramyocardial CD133(+) Application After Myocardial Infarction. EBioMedicine. 22, 208-224 (2017).
  55. Muller, P., et al. Intramyocardial fate and effect of iron nanoparticles co-injected with MACS(R) purified stem cell products. Biomaterials. 135, 74-84 (2017).
  56. Müller, P., Gaebel, R., Lemcke, H., Steinhoff, G., David, R. Data on the fate of MACS® MicroBeads intramyocardially co-injected with stem cell products. Data in brief. 13, 569-574 (2017).
  57. Skorska, A., et al. GMP-conformant on-site manufacturing of a CD133+ stem cell product for cardiovascular regeneration. Stem cell research & therapy. 8 (1), 33 (2017).
  58. Delyagina, E., Li, W., Ma, N., Steinhoff, G. Magnetic targeting strategies in gene delivery. Nanomedicine (Lond). 6 (9), 1593-1604 (2011).
  59. Schade, A., et al. Innovative strategy for microRNA delivery in human mesenchymal stem cells via magnetic nanoparticles. International journal of molecular sciences. 14 (6), 10710-10726 (2013).
  60. Delyagina, E., et al. Improved transfection in human mesenchymal stem cells: Effective intracellular release of pDNA by magnetic polyplexes. Nanomedicine. 9 (7), 999-1017 (2014).
  61. Yin, H., Kanasty, R. L., Eltoukhy, A. A., Vegas, A. J., Dorkin, J. R., Anderson, D. G. Non-viral vectors for gene-based therapy. Nature reviews. Genetics. 15 (8), 541-555 (2014).
  62. Chen, J., Guo, Z., Tian, H., Chen, X. Production and clinical development of nanoparticles for gene delivery. Molecular therapy. Methods & clinical development. 3, 16023 (2016).
  63. Juliano, R. L. The delivery of therapeutic oligonucleotides. Nucleic Acids Research. 44 (14), 6518-6548 (2016).
  64. Soenen, S. J., Rivera-Gil, P., Montenegro, J. -. M., Parak, W. J., de Smedt, S. C., Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano today. 6 (5), 446-465 (2011).
  65. Estelrich, J., Sánchez-Martín, M. J., Busquets, M. A. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. International journal of nanomedicine. 10, 1727-1741 (2015).

Play Video

Citer Cet Article
Hausburg, F., Müller, P., Voronina, N., Steinhoff, G., David, R. Protocol for MicroRNA Transfer into Adult Bone Marrow-derived Hematopoietic Stem Cells to Enable Cell Engineering Combined with Magnetic Targeting. J. Vis. Exp. (136), e57474, doi:10.3791/57474 (2018).

View Video