Summary

促纤维化信号增强因子介导的小鼠胚胎成纤维细胞再编程诱导心肌细胞的抑制

Published: June 03, 2018
doi:

Summary

通过 GATA4、Hand2、Mef2c、Tbx5、miR-1 和 miR-133 (GHMT2m) 的过度表达和 TGF β信号的抑制, 我们提出了一种健壮的方法, 将原发成纤维细胞重新编程成功能性心肌细胞。我们的协议在7天后的转导中产生跳动的心肌细胞, 效率高达60%。

Abstract

将一种体细胞类型转化为另一种躯体细胞, 具有巨大的模型和治疗人类疾病的潜力。以前的研究表明, 小鼠胚胎, 真皮和心脏成纤维细胞可以重新编程成功能性诱发心肌样的干细胞 (iCMs) 通过过度表达的心源性转录因子, 包括 GATA4, Hand2, Mef2c, 和Tbx5体外体内。然而, 这些先前的研究显示效率相对较低。为了恢复损伤后的心脏功能, 必须阐明调节心脏重新编程的机制, 以提高 iCMs 的效率和成熟度。

我们以前证明, 抑制亲纤维化信号显着提高重新编程效率。在这里, 我们详细的方法来实现编程效率高达60%。此外, 我们描述了几种方法, 包括流式细胞术, 免疫荧光成像, 钙成像, 以量化重新编程效率和成熟的重组成纤维细胞。通过这里详细的协议, 可以进行机械研究, 以确定积极和消极的调节心脏重新编程。这些研究可以确定信号通路, 可针对促进重新编程的效率和成熟, 这可能导致新的细胞治疗人类心脏病。

Introduction

缺血性心脏病是美国的主要死因1。大约80万美国人每年经历第一次或复发性心肌梗塞 (MI)1。继 MI 后, 心肌细胞 (CMs) 的死亡和心肌纤维化, 由活化的心脏成纤维形成, 损害心脏功能2,3。由于成人 CMs45的再生能力较差,MI 后心力衰竭的进展很大程度上是不可逆转的。虽然目前的临床治疗缓慢疾病进展和降低未来心脏事件的风险6,7,8,9, 没有治疗逆转疾病进展由于无法重新生成 CMs 后梗塞10。新的细胞疗法正在出现, 以治疗患者继 mi. 令人失望的是, 迄今为止, 通过 mi 向心脏提供干细胞的临床试验显示了不确定的再生潜能11,12,13,14,15,16,17,18

通过对四种转录因子的过度表达, 首次证明了由高桥 & Yamanaka 产生的人源性诱导多能干细胞 (hiPSCs), 为细胞治疗的新突破打开了大门19。这些单元格可以区分为所有三个胚芽层19, 并且以前已经显示了一些高效的用于生成大量 CMs 的方法, 其中有2021。HiPSC 衍生的 cms (髋关节 cms) 提供了一个强大的平台, 研究 cardiomyogenesis, 可能有重要的影响, 修复心脏后损伤。然而, 髋关节 CMs 目前面临的翻译障碍, 由于关注畸胎瘤形成22, 其不成熟的性质可能是亲致心律失常23。将成纤维细胞重新编程成 hiPSCs 激发了人们对直接重新编程成纤维细胞的兴趣。大意et . 表明, GATA4、Mef2c 和 Tbx5 (GMT) 在成纤维细胞中的过度表达导致了心脏谱系的直接重新编程, 尽管效率低下的24。通过添加 Hand2 (GHMT)25, 改进了重新编程效率。自这些早期研究以来, 许多出版物表明, 改变重新编程因子鸡尾酒与其他转录因子26,27,28,29,染色质修饰符30,31, microRNAs32,33, 或小分子34导致改进的重新编程效率和/或诱导心肌样细胞的成熟 (iCMs).

在这里, 我们提供了一个详细的协议, 以产生 iCMs 从小鼠胚胎成纤维细胞 (MEFs) 高效。我们以前表明, GHMT 鸡尾酒是显着改善, 增加了 miR-1 和 miR-133 (GHMT2m), 并进一步改善, 当亲纤维化信号通路, 包括转化生长因子β (TGF β) 信号或与蛋白质激酶 (岩石) 信号通路被抑制35。使用该协议, 我们表明大约60% 的细胞表达心肌肌钙蛋白 T (cTnT), 约50% 表达α actinin, 和大量的殴打细胞可以观察到11天后, 后再编程因素和治疗转导与 TGF β型 I 受体抑制剂 A-83-01。此外, 这些 iCMs 的表达间隙连接蛋白包括 43, 并呈现自发收缩和钙瞬变。与早期研究相比, 重新编程效率的显著提高表明了在脑梗塞后的内源细胞群中再生 CMs 的潜力。

Protocol

所有需要动物的实验都是由丹佛安舒茨医学院的机构动物护理和使用委员会批准的。 1. MEFs 的分离 在 E13 购买 C57BL/6 怀孕小鼠。船过夜。 弄死母亲根据批准的 IACUC 协议 (前: ~ 1.3 升/分 CO2 , 直到动物出现死亡后, 颈部脱位) 用70% 乙醇和开腹腔喷洒母亲。移除含有胚胎的子宫角, 并在10厘米的盘子中放置无菌 PBS。 在胚囊中进行切口以释放胚?…

Representative Results

使用上面概述的重新编程策略和在图 1B中, 我们生成的 iCMs 约70% 的细胞表达心肌肌钙蛋白 T 和大约55% 细胞表达心脏α actinin, 量化的流式细胞术在9天跟随 GHMT2m 的转导 (图 2A和B)。此外, 大多数细胞表达心肌肌钙蛋白 T, 肌钙蛋白 i, 和心脏α actinin 以及缝隙连接标志联结蛋白43在14天后转导 (图 2C和…

Discussion

本研究概述了一种高效的策略, 通过 GHMT2m 重编程因子结合抑制亲纤维化信号通路, 直接将成纤维细胞重新编程为功能 iCMs。通过流式细胞术、免疫荧光成像、钙成像和跳动细胞计数, 我们表明该协议中的大多数细胞都经过成功的重编程, 并采用 CM 血统的命运。我们以前已经表明, 添加抗纤维化化合物, 包括 TGF β I 型受体抑制剂 A-83-01 产生约6倍的数量增加殴打 iCMs 相比, 转导与 GHMT2m 单独, 表明亲纤维…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项研究得到了来自 Boettcher 基金会韦伯-华林生物医学研究项目的资金支持, 美国心脏协会科学家发展补助金 (13SDG17400031), 科罗拉多大学医学系杰出的早期职业生涯学者计划, 科罗拉多大学心脏科洛 Nyle 捐赠和 NIH R01HL133230 (到 K)。犍为县 R 得到了美国国立卫生研究院/NCATS 科罗拉多 CTSA 赠款号 TL1TR001081 和科罗拉多大学纤维化研究 & 翻译协会 (CFReT) 博士研究生奖学金的支持。这项研究也得到了癌症中心支持补助金 (P30CA046934), 皮肤病研究核心赠款 (P30AR057212), 以及在科罗拉多大学安舒茨医学院的流式细胞术核心的支持。

Materials

C57BL/6 Mice Charles River's Laboratory 027 For MEF isolation
Platinum E (PE) Cells Cell Biolabs, INC RV-101 For retrovirus production
DMEM High Glucose Gibco SH30022.FS Component of iCM, PE, and Growth media
Medium 199 Life Technologies 11150-059 Component of iCM media
Fetal Bovine Serum Gemini 100106 Component of iCM, PE, and Growth media
Donor Horse Serum Gemini 100508 500 Component of iCM media
MEM Essential Amino Acids, 50X Life Technologies 11130051 Component of iCM media
Sodium Pyruvate Solution, 100X Life Technologies 11360070 Component of iCM media and for calcium imaging
MEM Non-Essential Amino Acids, 100X Life Technologies 11140050 Component of iCM media
MEM Vitamin Solution, 100X Life Technologies 11120-052 Component of iCM media
Insulin-Transferrin-Selenium Gibco 41400045 Component of iCM media
B27 Gibco 17504-044 Component of iCM media
Penicilin-Streptomycin Gibco 15140-122 Component of iCM, PE, and Growth media
GlutaMAX (L-Glutamine Supplement) Gibco 35050-061 Component of iCM, PE, and Growth media
Blasticidin-HCl Life Technologies A11139-03 Component of PE media
Puromycin dihydrochloride Life Technologies A11138-03 Component of PE media
0.25% Trypsin/EDTA Gibco 25200-056 For detaching cells from culture dishes
A-83-01 R&D Systems – Tocris 2939/10 Treat cells to inhibit TGF-β signaling – promotes high efficiecy reprogramming. Use at 0.5 µM
DMSO Thermo Scientific 85190 For dilution and storage of A-83-01 and component of Freeze Medium
SureCoat Cellutron SC-9035 For coating dishes to plate MEFs
FuGENE 6 Transfection Reagent Promega E2692 Transfection Reagent
Opti-MEM Reduced Serum Media Gibco 11058-021 Transfection Reagent
pBabe-X Myc-GATA4 Plasmid containing reprogramming factor
pBabe-X Myc-Hand2 Plasmid containing reprogramming factor
pBabe-X Myc-Mef2c Plasmid containing reprogramming factor
pBabe-X Myc-Tbx5 Plasmid containing reprogramming factor
pBabe-X miR-1 Plasmid containing reprogramming factor
pBabe-X miR-133 Plasmid containing reprogramming factor
pBabe-X GFP Plasmid containing reprogramming factor
Polybrene (Hexadimethrine bromide) Sigma H9268-5G For viral induction. Use at a concentration of 6 µg/mL
Vacuum Filter + bottles (0.22 µm pores) Nalgene  569-0020  For filtering media
Syringes Bd Vacutainer Labware  309654 For viral filtration
0.45 µm Filters Celltreat 229749 For viral filtration
70 µm cell strainers Falcon  352350 For MEF isolation and Flow Cytometry
Cytofix/Cytoperm Solution BD 554722 For fixation and permeabilization of cells for flow cytometry
perm/wash buffer  BD 554723 For washing cells for flow cytometry
DPBS 1X Gibco 14190-250 For washing cells
Bovine Serum Albumin VWR 0332-100g For flow cytometry and calcium imaging
Goat Serum Sigma  G9023 For blocking cells for Flow Cytometry
Donkey Serum Sigma D9663-10mg For blocking cells for Flow Cytometry
Mouse Troponin T Thermo Scientific ms-295-p 1:400 IF, 1:200 Flow Cytometry
Mouse α-actinin Sigma A7811L 1:400 IF, 1:200 Flow Cytometry
Rabbit Connexin 43 Sigma  C6219 1:400 IF
Rabbit Troponin I PhosphoSolutions 2010-TNI 1:400 IF
Hoechst Life Technologies 62249 1:10000 IF
Alexa 488, rabbit Life Technologies A-11034 1:800 IF
Alexa 555, mouse Life Technologies A-21422 1:800 IF
Alexa 647, mouse Life Technologies A-31571 1:200 Flow Cytometry
27-color ZE5 Flow Cytometer  Bio-RAD For FACS
Paraformaldehyde sigma P6148-500mg For fixing cells for IF
Triton X-100 Promega H5142 For permeabilization of cells for IF
EVOS™ FL Color Imaging System Thermo Scientific AMEFC4300 For IF
NaCl RPI S23020-5000 For calcium imaging
KCl VWR 395 For calcium imaging
CaCl2 Fisher C614-500 For calcium imaging
MgCl2 VWR 97061-352 For calcium imaging
glucose sigma G7528-250g For calcium imaging
HEPES sigma H4034-500g For calcium imaging
Fura-2 AM Life Technologies F1221 For calcium imaging
Fluronic F-127 Sigma P2443-250g For calcium imaging
Nifedipine Sigma N7634-1G For disruption calcium transients in iCMs – use at 10 µM
Isoproterenol sigma I6504-1g For increasing number of calcium transients in iCMs – use at 1-2 µM
Marianas Spinning Disk Confocal microscope 3i For calcium imaging
ethanol Decon Laboratories 2801
bleach Clorox
50 mL conical tubes GREINER BIO-ONE 227261
15 mL conical tubes GREINER BIO-ONE 188271
15 cm cell culture dishes Falcon 353025
10 cm cell culture dishes Falcon 353003
60 mm cell culture dishes GREINER BIO-ONE 628160
6 well cell culture plates GREINER BIO-ONE 657160 
12 well cell culture plates GREINER BIO-ONE 665180 
24 well cell culture plates GREINER BIO-ONE 662160 

References

  1. Benjamin, E. J., et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 136 (20), (2017).
  2. Laflamme, M. A., Murry, C. E. Regenerating the heart. Nat. Biotechnol. 23 (7), 845-856 (2005).
  3. Mercola, M., Ruiz-Lozano, P., Schneider, M. D. Cardiac muscle regeneration: lessons from development. Genes & Development. 25 (4), 299-309 (2011).
  4. Bergmann, O., et al. Evidence for cardiomyocyte renewal in humans. Science. 324 (5923), 98-102 (2009).
  5. Senyo, S. E., et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 493 (7432), 433-436 (2013).
  6. Nabel, E. G., Braunwald, E. A tale of coronary artery disease and myocardial infarction. N Engl J Med. 366 (1), 54-63 (2012).
  7. Packer, M., et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 106 (17), 2194-2199 (2002).
  8. The CAPRICORN Investigators. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomized trial. The Lancet. 357 (9266), 1385-1390 (2001).
  9. Marangou, J., Paul, V. Current attitudes on cardiac devices in heart failure: a review. Clin Ther. 37 (10), 2206-2214 (2015).
  10. Xin, M., Olson, E. N., Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Bio. 14 (8), 529-541 (2013).
  11. Wollert, K. C., et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet. 364 (9429), 141-148 (2004).
  12. Schachinger, V., et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med. 355 (12), 1210-1221 (2006).
  13. Huikuri, H. V., et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur. Heart J. 29 (22), 2723-2732 (2008).
  14. Janssens, S., et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 367 (9505), 113-121 (2006).
  15. Lunde, K., et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med. 355 (12), 1199-1209 (2006).
  16. Hirsch, A., et al. Intracoronary infusion of autologous mononuclear bone marrow cells or peripheral mononuclear blood cells after primary percutaneous coronary intervention: rationale and design of the HEBE trial – a prospective, multicenter, randomized trial. Am. Heart J. 152 (3), 434-441 (2006).
  17. Hirsch, A., et al. Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur. Heart J. 32 (14), 1736-1747 (2011).
  18. Karantalis, V., et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ Res. 114 (8), 1302-1310 (2014).
  19. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663-676 (2006).
  20. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci. 109 (27), E1848-E1857 (2012).
  21. Loh, K. M., et al. Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types. Cell. 166 (2), 451-467 (2016).
  22. Yoshida, Y., Yamanaka, S. iPS cells: A source of cardiac regeneration. J. Mol. Cell. Cardiol. 50 (2), 327-332 (2011).
  23. Shiba, Y., et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature. 538, 388-391 (2016).
  24. Ieda, M., et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 142 (3), 357-386 (2010).
  25. Song, K., et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 485, 599-604 (2012).
  26. Hirai, H., Katoku-Kikyo, N., Keirstead, S. A., Kikyo, N. Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain. Cardiovasc Res. 100 (1), 105-113 (2013).
  27. Qian, L., Berry, E. C., Fu, J., Ieda, M., Srivastava, D. Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro. Nat Protoc. 8 (6), 1204-1215 (2013).
  28. Addis, R. C., et al. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J Mol Cell Cardiol. 60, 97-106 (2013).
  29. Ifkovitz, J. L., Addis, R. C., Epstein, J. A., Gearhart, J. D. Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes. PLoS One. 9 (2), e89678 (2014).
  30. Zhou, Y., et al. Bmi1 Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming. Cell Stem Cell. 18 (3), 382-395 (2016).
  31. Christoforou, N., et al. Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming. PLoS One. 8 (5), e63577 (2013).
  32. Jayawardena, T. M., et al. MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function. Circ Res. 116 (3), 418-424 (2015).
  33. Jayawardena, T. M., et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 110 (11), 1465-1473 (2012).
  34. Cao, N., et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science. 352 (6290), 1216-1220 (2016).
  35. Zhao, Y., et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nature Communications. 6, 1-15 (2015).
  36. Morita, S., Kojima, T., Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Therapy. 7, 1063-1066 (2000).
  37. Zhou, H., Dickson, M. E., Kim, M. S., Bassel-Duby, R., Olson, E. N. Akt1/protein kinase B enhances reprogramming of fibroblasts to functional cardiomyocytes. Proc Natl Acad Sci. 112 (38), 11864-11869 (2015).
  38. Zhou, H., et al. ZFN281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression. Genes & Dev. 31, 1770-1783 (2017).
  39. Mohamed, T. M., et al. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming. Circulation. 135, 978-995 (2017).
  40. Qian, L., et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 485, 593-598 (2012).
  41. Mathison, M., et al. In situ reprogramming to transdifferentiate fibroblasts into cardiomyocytes using adenoviral vectors: Implications for clinical myocardial regeneration. J Thorac Cardiovasc Surg. , 329-339 (2017).
check_url/fr/57687?article_type=t

Play Video

Citer Cet Article
Riching, A. S., Zhao, Y., Cao, Y., Londono, P., Xu, H., Song, K. Suppression of Pro-fibrotic Signaling Potentiates Factor-mediated Reprogramming of Mouse Embryonic Fibroblasts into Induced Cardiomyocytes. J. Vis. Exp. (136), e57687, doi:10.3791/57687 (2018).

View Video