Summary

油酸注射液在猪急性呼吸窘迫综合征模型中的研究

Published: October 26, 2018
doi:

Summary

本文提出一种通过中心静脉注射油酸诱导猪急性肺损伤的方案。这是一个建立的动物模型, 用于研究急性呼吸窘迫综合征 (ARDS)。

Abstract

急性呼吸窘迫综合征是一种相关的重症监护疾病, 发病率介于2.2% 至19% 的重症监护病房患者之间。尽管在过去的几十年治疗进展, ARDS 患者仍然遭受死亡率在35和40% 之间。仍然需要进一步的研究, 以改善患者的结果, 患有 ARDS。一个问题是, 没有单一的动物模型可以模仿急性呼吸窘迫综合征的复杂病理机制, 但有几个模型来研究它的不同部分。油酸注射液 (OAI) 诱发肺损伤是研究动物通气策略、肺力学和通气/灌注分布的良好模式。OAI 导致气体交换严重受损, 肺力学的恶化和 alveolo 毛细管屏障的破坏。这个模型的缺点是这个模型有争议的机械相关性和中心静脉通路的必要性, 这是挑战, 特别是在较小的动物模型。总之, OAI 引起的肺损伤可使小动物和大鼠产生重现性结果, 因此是研究 ARDS 的一个非常适合的模型。然而, 进一步的研究是必要的, 以找到一个模型, 模仿 ARDS 的所有部分, 缺乏与现有的不同模型相关的问题。

Introduction

急性呼吸窘迫综合征 (ARDS) 是一种重症监护综合征, 自50年前的第一次描述以来, 已广泛研究1。这一研究机构使人们更好地了解病理生理学, 并导致 ARDS 的发展, 从而改善患者护理和结果2,3。然而, 患有 ARDS 的患者的死亡率仍然很高, 约 35-40%4,5,6。事实上, 大约10% 的 icu 录取和23% 的 icu 病人谁需要机械通气是由于 ARDS 强调了在这一领域的进一步研究的相关性。

动物模型被广泛应用于研究, 以检查不同类型疾病的病理生理变化和潜在的治疗方式。由于 ARDS 的复杂性, 没有单一的动物模型来模拟这种疾病, 但不同的模型代表不同的方面7。一种成熟的模型是油酸注射液 (OAI) 所致肺损伤。该模型已被广泛应用于各种动物, 包括小鼠8、大鼠9、猪10、狗11和绵羊12。油酸是一种不饱和脂肪酸和最常见的脂肪酸在身体的健康人类13。它是存在于人血浆, 细胞膜和脂肪组织13。在生理上, 它是必然的白蛋白, 而它是通过血液13进行。血液中脂肪酸含量的增加与不同的病症相关, 某些疾病的严重性与血清脂肪酸水平13有关。建立了油酸 ARDS 模型, 试图重现14例外伤患者脂栓塞引起的 ards。油酸直接影响在肺部的固有免疫受体13和触发中性粒细胞积累15, 炎症介质生产16, 和细胞死亡13。在生理上, 油酸诱发快速的低氧血症, 增加肺动脉压力和血管外肺积水的积累。此外, 它还诱发动脉低血压和心肌凹陷7。这种模式的缺点是中心静脉通路的必要性, 有问题的机械相关性和快速低氧血症和心脏抑郁症导致的潜在致命进展。与其他模型相比, 该模型的优势在于小动物和大鼠的可用性、ards 中的病理生理学机制的有效重现性、油酸注射液后急性发作以及研究孤立 ards 的可能性。没有系统性炎症像在许多其他脓毒症模型7。本文对油酸致猪肺损伤进行了详细的描述, 为表征肺功能损害的稳定性提供了代表性的数据。OAI 引起的肺损伤有不同的实验方案。这里提供的协议能够可靠地诱发急性肺损伤。

Protocol

这里描述的所有动物实验都已得到机构和国家动物护理委员会 (德国科布伦茨 Landesuntersuchungsamt 莱茵-普法尔茨) 的批准; 批准号 G14-1-077), 并按照该准则进行欧洲和德国实验室动物科学协会。实验在2-3 月龄的麻醉雄性猪 (sus 野猪家蝇) 中进行, 重27-29 公斤。 1. 麻醉、插管和机械通气 在麻醉前扣留6小时的食物, 以降低吸入的风险, 但允许免费使用水来减轻压力。 对?…

Representative Results

2/FiO2-油酸分馏应用后的比值降低 (图 1)。在本文的研究中, 0.185 ±0.01 毫升千克-1油酸是必要的诱导肺损伤。在肺损伤后, 所有动物均表现为氧合受损, 并在进一步的时间过程中出现了变种。在动物1和 3, 它保持在一个水平, 很少波动;在动物2中, 我们观察到最初的增加, 其次是末端的减少, 而动物4显示恒定的上升。然而, 在6小时后…

Discussion

本文介绍了一种油酸致肺损伤的方法, 作为研究重症 ARDS 各个方面的模型。另外还有不同乳液、不同注射部位和不同温度的乳液232425262728 的其他协议 ,29。我们的方法提供了可重现和稳定的肺功能恶化。由于油酸…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者要感谢达格玛 Dirvonskis 的卓越技术支持。

Materials

3-way-stopcock blue Becton Dickinson Infusion Therapy AB Helsingborg, Sweden 394602
3-way-stopcock red Becton Dickinson Infusion Therapy AB Helsingborg, Sweden 394605
Atracurium Hikma Pharma GmbH , Martinsried 4262659
Canula 20 G Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 301300
Datex Ohmeda S5 GE Healthcare Finland Oy, Helsinki, Finland
Desinfection Schülke & Mayr GmbH, Germany 104802
Endotracheal tube Teleflex Medical Sdn. Bhd, Malaysia 112482
Endotracheal tube introducer Rüsch 5033062
Engström Carestation GE Heathcare, Madison USA
Fentanyl Janssen-Cilag GmbH, Neuss
Gloves Paul Hartmann, Germany 9422131
Incetomat-line 150 cm Fresenius, Kabi Germany GmbH 9004112
Ketamine Hameln Pharmaceuticals GmbH
Laryngoscope Teleflex Medical Sdn. Bhd, Malaysia 671067-000020
Logical pressure monitoring system Smith- Medical Germany GmbH MX9606
Logicath 7 Fr 3-lumen 30cm Smith- Medical Germany GmbH MXA233x30x70-E
Masimo Radical 7 Masimo Corporation Irvine, Ca 92618 USA
Mask for ventilating dogs Henry Schein, Germany 730-246
Neofox Kit Ocean optics Largo, FL USA NEOFOX-KIT-PROBE
Norepinephrine Sanofi- Aventis, Seutschland GmbH 73016
Oleic acid Applichem GmbH Darmstadt, Germany 1,426,591,611
Original Perfusor syringe 50ml Luer Lock B.Braun Melsungen AG, Germany 8728810F
PA-Katheter Swan Ganz 7,5 Fr 110cm Edwards Lifesciences LLC, Irvine CA, USA 744F75
Percutaneous sheath introducer set 8,5 und 9 Fr, 10 cm with integral haemostasis valve/sideport Arrow international inc. Reading, PA, USA AK-07903
Perfusor FM Braun B.Braun Melsungen AG, Germany 8713820
Potassium chloride Fresenius, Kabi Germany GmbH 6178549
Propofol 2% Fresenius, Kabi Germany GmbH
Saline B.Braun Melsungen AG, Germany
Sonosite Micromaxx Ultrasoundsystem Sonosite Bothell, WA, USA
Stainless Macintosh Size 4 Teleflex Medical Sdn. Bhd, Malaysia 670000
Sterofundin B.Braun Melsungen AG, Germany
Stresnil 40mg/ml Lilly Germany GmbH, Abteilung Elanco Animal Health
Syringe 10 mL Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 309110
Syringe 2 mL Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 300928
Syringe 20 mL Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 300296
Syringe 5 mL Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 309050
venous catheter 22G B.Braun Melsungen AG, Germany 4269110S-01

References

  1. Ashbaugh, D. G., Bigelow, D. B., Petty, T. L., Levine, B. E. Acute respiratory distress in adults. The Lancet. 2 (7511), 319-323 (1967).
  2. Brower, R. G., et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The New England Journal of Medicine. 342 (18), 1301-1308 (2000).
  3. Briel, M., et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 303 (9), 865-873 (2010).
  4. Bellani, G., et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 315 (8), 788-800 (2016).
  5. Chiumello, D., et al. Respiratory support in patients with acute respiratory distress syndrome: an expert opinion. Critical Care. 21 (1), 240 (2017).
  6. Barnes, T., Zochios, V., Parhar, K. Re-examining Permissive Hypercapnia in ARDS: A Narrative Review. Chest. , (2017).
  7. Matute-Bello, G., Frevert, C. W., Martin, T. R. Animal models of acute lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology. 295 (3), 379-399 (2008).
  8. Kobayashi, K., et al. Thromboxane A2 exacerbates acute lung injury via promoting edema formation. Scientific Reports. 6, 32109 (2016).
  9. Tian, X., Liu, Z., Yu, T., Yang, H., Feng, L. Ghrelin ameliorates acute lung injury induced by oleic acid via inhibition of endoplasmic reticulum stress. Life Sciences. , (2017).
  10. Kamuf, J., et al. Endexpiratory lung volume measurement correlates with the ventilation/perfusion mismatch in lung injured pigs. Respiratory Research. 18 (1), 101 (2017).
  11. Du, G., Wang, S., Li, Z., Liu, J. Sevoflurane Posttreatment Attenuates Lung Injury Induced by Oleic Acid in Dogs. Anesthesia & Analgesia. 124 (5), 1555-1563 (2017).
  12. Prat, N. J., et al. Low-Dose Heparin Anticoagulation During Extracorporeal Life Support for Acute Respiratory Distress Syndrome in Conscious Sheep. Shock. 44 (6), 560-568 (2015).
  13. Goncalves-de-Albuquerque, C. F., Silva, A. R., Burth, P., Castro-Faria, M. V., Castro-Faria-Neto, H. C. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation. Mediators of Inflammation. 2015, (2015).
  14. Schuster, D. P. ARDS: clinical lessons from the oleic acid model of acute lung injury. American Journal of Respiratory and Critical Care Medicine. 149 (1), 245-260 (1994).
  15. Goncalves-de-Albuquerque, C. F., et al. Oleic acid induces lung injury in mice through activation of the ERK pathway. Mediators of Inflammation. 2012, 956509 (2012).
  16. Ballard-Croft, C., Wang, D., Sumpter, L. R., Zhou, X., Zwischenberger, J. B. Large-animal models of acute respiratory distress syndrome. The Annals of Thoracic Surgery. 93 (4), 1331-1339 (2012).
  17. O’Driscoll, B. R., et al. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax. 72, 90 (2017).
  18. Ettrup, K. S., et al. Basic surgical techniques in the Gottingen minipig: intubation, bladder catheterization, femoral vessel catheterization, and transcardial perfusion. Journal of Visualized Experiments. (52), 2652 (2011).
  19. Russ, M., et al. Lavage-induced Surfactant Depletion in Pigs As a Model of the Acute Respiratory Distress Syndrome (ARDS). Journal of Visualized Experiments. (115), 53610 (2016).
  20. Brower, R. G., et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. The New England Journal of Medicine. 351 (4), 327-336 (2004).
  21. Hartmann, E. K., et al. Influence of respiratory rate and end-expiratory pressure variation on cyclic alveolar recruitment in an experimental lung injury model. Critical Care. 16 (1), (2012).
  22. Hartmann, E. K., et al. Inhalation therapy with the synthetic TIP-like peptide AP318 attenuates pulmonary inflammation in a porcine sepsis model. BMC Pulmonary Medicine. 15, 7 (2015).
  23. Julien, M., Hoeffel, J. M., Flick, M. R. Oleic acid lung injury in sheep. Journal of Applied Physiology. 60 (2), 433-440 (1986).
  24. Wiener-Kronish, J. P., et al. Relationship of pleural effusions to increased permeability pulmonary edema in anesthetized sheep. Journal of Clinical Investigation. 82 (4), 1422-1429 (1988).
  25. Yahagi, N., et al. Low molecular weight dextran attenuates increase in extravascular lung water caused by ARDS. American Journal of Emergency Medicine. 18 (2), 180-183 (2000).
  26. Eiermann, G. J., Dickey, B. F., Thrall, R. S. Polymorphonuclear leukocyte participation in acute oleic-acid-induced lung injury. The American Review of Respiratory Disease. 128 (5), 845-850 (1983).
  27. Townsley, M. I., Lim, E. H., Sahawneh, T. M., Song, W. Interaction of chemical and high vascular pressure injury in isolated canine lung. Journal of Applied Physiology. 69 (5), 1657-1664 (1990).
  28. Young, J. S., et al. Sodium nitroprusside mitigates oleic acid-induced acute lung injury. The Annals of Thoracic Surgery. 69 (1), 224-227 (2000).
  29. Katz, S. A., et al. Catalase pretreatment attenuates oleic acid-induced edema in isolated rabbit lung. Journal of Applied Physiology. 65 (3), 1301-1306 (1988).
  30. El-Haddad, H., Jang, H., Chen, W., Soubani, A. O. Effect of ARDS Severity and Etiology on Short-Term Outcomes. Respiratory Care. 62 (9), 1178-1185 (2017).
  31. Wang, H. M., Bodenstein, M., Markstaller, K. Overview of the pathology of three widely used animal models of acute lung injury. European Surgical Research. 40 (4), 305-316 (2008).
check_url/fr/57783?article_type=t

Play Video

Citer Cet Article
Kamuf, J., Garcia-Bardon, A., Ziebart, A., Thomas, R., Rümmler, R., Möllmann, C., Hartmann, E. K. Oleic Acid-Injection in Pigs As a Model for Acute Respiratory Distress Syndrome. J. Vis. Exp. (140), e57783, doi:10.3791/57783 (2018).

View Video