Summary

成像 FITC-葡聚糖作为胞吐作用调节的记者

Published: June 20, 2018
doi:

Summary

在这里, 我们详细介绍了一种带电细胞成像的调节胞吐作用方法。该方法利用 FITC-葡聚糖, 在溶酶体相关细胞器中积累, 作为记者。这一简单的方法也允许区分不同模式的调节胞吐作用在细胞难以操纵基因。

Abstract

被调控的胞吐作用是一个过程, 其中储存在分泌颗粒 (SGs) 的货物是针对分泌扳机释放的。调节胞吐作用是细胞间沟通的基础, 是神经递质、激素、炎症介质和其他化合物分泌的关键机制, 由多种细胞引起。至少有三种不同的机制是已知的调节胞吐作用: 全胞吐作用, 其中一个单一的 sg 完全融合与等离子膜, 亲吻和运行胞吐作用, 其中一个单一的 sg 瞬态保险丝与等离子膜, 和复合胞吐作用, 其中在 SG 与等离子膜融合之前或之后的几个 SGs 保险丝。细胞所进行的调节胞吐作用的类型通常由分泌触发器的类型决定。然而, 在许多细胞中, 单个分泌触发器可以同时激活多种模式的调节胞吐作用。尽管它们在细胞类型和种类上的丰富和重要, 但确定不同分泌方式的机制基本上没有解决。对胞吐作用的不同模式进行调查的主要挑战之一, 是区分两者之间的困难, 并分别进行探讨。在这里, 我们描述使用荧光素异硫氰酸酯 (FITC)-葡聚糖作为胞吐作用的记者, 和活细胞成像, 以区分不同的途径, 调节胞吐作用, 侧重于复合胞吐作用, 基于鲁棒性和exocytic 事件的持续时间。

Introduction

调节胞吐作用是一个主要的机制, 使货物从分泌细胞释放, 以响应特定的触发。这些货物是预先形成的, 并被封存成分泌性的囊泡, 在其中储存, 直到触发器中继的信号, 以释放 SGs 的内容。不同类型的信号可能导致不同的调节胞吐作用模式, 或不同的调节胞吐作用模式可能同时发生。三调节胞吐作用的主要模式为: 全胞吐作用, 包括与血浆膜完全融合单一分泌颗粒;胞吐作用, 它涉及分泌颗粒与血浆膜的瞬态融合, 其次是其循环再造;和复合胞吐作用, 其特点是着融合的几个 SGs 之前 (, 多粒胞吐作用) 或顺序 (, 顺序胞吐作用), 以融合与等离子膜1。复合胞吐作用被认为是最广泛的货物释放模式2, 因为它允许快速分泌的货物, 包括从 SGs 在远离等离子膜。复方胞吐作用已记录在外分泌和内分泌细胞3,4,5,6,7,8,9, 以及在免疫细胞。在免疫细胞中, 如嗜酸性粒101112和中性白细胞13, 复方胞吐作用允许快速和强健地释放需要杀死入侵病原体的介质, 如细菌或寄生虫。肥大细胞 (MCs) 在先天免疫反应、过敏反应和其他过敏性应答141516中, 部署复合胞吐作用, 有效释放预贮存的炎症介质;,17. 由于胞吐作用的不同模式可能同时发生1819, 因此在实时区分它们或确定其各自的融合机制方面已成为一项挑战, 因此阐明其基本机制。

在这里, 我们提出了一个方法, 基于细胞加载 FITC 葡聚糖的活细胞成像, 使实时跟踪 exocytic 事件, 并区分其不同的模式。特别是, 我们的方法允许独家监测复合胞吐作用。

FITC 葡聚糖是 pH 敏感荧光 FITC 与葡聚糖多糖的共轭。荧光标记的 dextrans 已显示为进入细胞由 micropinocytosis20,21和 macropinocytosis22,23。随着吞室成熟为溶酶体, 已证明 FITC-葡聚糖在溶酶中积累, 没有明显的降解。然而, 由于 FITC 是一个高度 pH 敏感的荧光24, 溶酶腔是酸性的, FITC-葡聚糖荧光止渴到达溶酶体24。因此, 建立 dextrans 作为溶酶体靶向的货物, 连同 FITC 的 pH 敏感性, 为使用 FITC-葡聚糖在溶酶研究胞吐作用25,26,27奠定了基础,28,29

在几种细胞类型中, 包括 MCs、中性粒细胞、嗜酸性细胞、细胞毒性 T 淋巴细胞、黑色素等, SGs 显示溶酶体特征, 被归类为溶酶体相关细胞器 (LROs) 或分泌溶体酶30,31.由于 LROs 具有酸性的腔内 pH 值, FITC-葡聚糖可以用来可视化他们的胞吐作用, 因为更高的 pH 值与 LROs exteriorization 相关。事实上, FITC-葡聚糖已被用于监测 MCs18,32,33的胞吐作用。在这种方法中, FITC 葡聚糖被添加到细胞培养, 由细胞吞饮, 并归类到 SGs。在溶酶体中, FITC 荧光在 SGs 细胞内被淬火。然而, 当 sg 与等离子膜融合并随之暴露于外部环境时, FITC-葡聚糖在 sg pH 升高时就恢复了荧光, 允许通过活细胞显微镜对 exocytic 事件进行简单的跟踪。在这里, 我们调整了这种方法, 以实现独特的跟踪复合胞吐作用。

以前有两种方法用于跟踪复合胞吐作用。电镜是描述 exocytic 结构的第一种方法, 它表明了胞吐作用不同模式的发生。特别是, 胰腺腺泡细胞34和 MCs35,36,37的 “分泌通道” 的观察导致了复方胞吐作用的假说。然而, 虽然电子显微镜的高分辨率具有揭示熔泡的能力, 但它无法跟踪其融合的动力学, 因此不能定义它们是否对应于复胞吐作用或重新捕获颗粒融合过程中的 SG 融合。跟随他们的吞。这种障碍是克服其他方法, 可以测量胞吐作用在活细胞, 如膜片钳测量的等离子膜电容11,13,38,39或探头40的媒体。然而, 补丁夹紧需要一个特殊的设置, 可能不适合所有的细胞类型。只有当货物在极接近电极的情况下释放时, 探头测量才能跟踪胞吐作用。因此, 使用活细胞成像比这些方法更有优势, 因为它不仅允许实时跟踪胞吐作用, 而且还允许快速简单地从整个单元中获取数据。

用活细胞显微镜对 FITC 葡聚糖的跟踪也为其他活细胞成像方法提供了一些优势。例如, 一个广泛使用的方法是全内反射荧光显微镜 (TIRFM) 的细胞加载与荧光 SG 探针或表达荧光蛋白标记的 SG 货物或膜蛋白26,41,42,43. 这种方法的优点在于它能够监测与等离子膜 (此处称为脚印) 相近的事件, 因此 exocytic 事件。然而, 这也是这一方法的缺点, 因为只有与 coverglass 相邻的细胞分数和接近显微镜透镜可以成像44。这些脚印是否确实代表了整个细胞膜表面仍然有争议的45,46,47。在这方面, 使用 pH 敏感的染料, 如 FITC 葡聚糖和标准荧光显微镜或共聚焦显微镜与开放针孔, 使整个细胞的成像, 从而捕获的总 exocytic 事件发生在该细胞。

其他 ph 敏感的记者, 用于研究受控胞吐作用的全细胞成像或 TIRFM 包括 sg 货物或 sg 膜蛋白融合到 phlourin, 一个 pH 敏感的 GFP 变种。例子包括 NPY-phlourin-, β-hexoseaminidase-phlourin 和 synapto-phluorin48,49,50,51,52。虽然这些探针的表达可能更紧密地代表 SGs 的内源成分, 但它需要转染细胞, 因此可能不太适合难以染的细胞。因此, 在研究难以染的细胞, 或在需要多重基因组操作的实验条件下, 使用一种可以简单补充到细胞培养基中的化合物, 如 FITC 葡聚糖, 是有利的。.FITC-葡聚糖也提供了优于吖啶橙 (AO), 另一种 pH 敏感染料, 已用于跟踪胞吐作用的活细胞显微镜53,54,55,56,57,58. AO 已被证明可以诱导对水泡的光解, 导致假闪光, 这不对应于实际分泌过程27。相反, FITC-葡聚糖反映了更好的分泌事件, 可能是由于其低光诱导生产活性氧27

值得注意的是, 研究胞吐作用的另一种方法是通过在这个过程中打开的融合孔跟踪染料的流入, 从外部介质进入 SG。在这种情况下, 染料被添加到外部培养基旁边的分泌触发器。然后, 当融合孔打开, 染料扩散到 SG59,60。这种方法的一个明显的优点是, 它也提供的能力, 以估计的融合孔径大小, 使用的染料的可变大小。例如, 不同分子量 (兆瓦) 的 dextrans, 共轭到不同的显影, 可以作为胞外染料, 即能穿透 SG 的葡聚糖的最大尺寸对应于融合孔59的大小,61,62,63,64. 此外, 这种方法不需要使用 pH 敏感探针。然而, 一个很大的缺点是, 信噪比是非常低的, 因为在图像采集过程中存在大量的染料, 导致较高的背景。

总的来说, 使用 FITC 葡聚糖作为胞吐作用的标志, 克服了以往报告方法的一些缺点, 如信噪比, 毒性, 动态跟踪和复杂性。

在这里, 我们描述了使用 FITC 葡聚糖监测复合胞吐作用在 RBL-2H3 肥大细胞系 (这里称为 RBL, 主要建立埃克莱斯顿65和进一步克隆 Barsumian66), 对免疫球蛋白 E (IgE)/抗原 (Ag) 活化反应。

Protocol

1. 筹备工作 RBL 培养基的制备 混合500毫升低葡萄糖 Dulbecco 的改良鹰的培养基 (DMEM) 与56毫升的胎牛血清 (血清), 5.5 毫升青霉素-链霉素-制霉菌素溶液, 5.5 毫升 l-谷氨酰胺200毫米溶液。这导致低葡萄糖 DMEM 补充10% 血清, 100 µg/毫升链霉素, 100 单位/毫升青霉素, 12 单位/毫升制霉菌素, 2 毫米 l-谷氨酰胺。 使用0.22 µm 孔径大小的顶部真空过滤器过滤介质, 并存储在4摄氏度。 <…

Representative Results

图 1a代表了 FITC-葡聚糖如何作为胞吐作用的记者, 并概括了 exocytic 事件的不同模式。首先, 细胞与 FITC 葡聚糖一起孵化, 这是由吞饮内化, 并归类到 SGs。由于 MCs 的 SGs 是 LROs, 他们的低 pH 值抑制 FITC 的荧光, 这里显示为黑色颗粒 (A-C, I)。当细胞由 secretagogue 和与等离子膜的 SGs 保险丝触发时, 形成一个融合孔, 允许将质子和 sgs 的碱性流出。因此, FITC 恢?…

Discussion

在这里, 我们描述如何追踪 FITC-葡聚糖的荧光加载到 SGs 可以用来专门捕捉化合物胞吐作用事件。这是通过设置显微镜, 每15秒获得一个图像, 从而确保只有长期的事件将记录一段时间, 因此不包括短事件, 将对应于完全胞吐作用或接吻和运行胞吐作用。为了建立这种方法, 我们表明, 在 RBL 细胞中表达的 Rab5 亚型的击倒, 是复合胞吐作用的关键, 消除了捕捉 FITC-葡聚糖释放事件的能力, 而细胞的整体分?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢 u. 阿瑟瑞博士对 cDNA 的慷慨馈赠。我们感谢 Drs. g. 质量, l. Mittleman, m Shaharbani, 和 Zilberstein 从 Sackler 细胞 & 分子成像中心为他们的宝贵协助与显微术。这项工作得到了美国-以色列两国科学基金会 (赠款2013263至 r. Sagi-艾森伯格、i. Hammel 和 s.j. 加利) 的支持, 并由以色列科学院创立的以色列科学基金会授予 933/15 (以 r Sagi-艾森伯格) 和 NIH 赠款 U19 AI 104209 和 R01 AR067145 (S.J. 加利)。

Materials

DMEM low glucose Biological Inductries 01-050-1A
Fetal bovine serum Gibco 12657
Pen-strep-nystatin solution Biological Inductries 03-032-1B
L-Glutamine 200 mM solution  Biological Inductries 03-020-1A
FITC dextran 150K Sigma-Aldrich 46946-500MG-F
Trypsin/EDTA Solution B Biological Inductries 03-052-1A Warm in 37 °C water bath before use
Top-vacuum filter of 0.22 µm pore size  Sigma-Aldrich CLS430769-1EA
Cellulose acetate syringe filter unit, 0.22 µm pore size Sartorius 16534K
Chambered coverglass  Thermo scientific 155411
Corning tissue-culture treated culture dishes Sigma-Aldrich CLS430167
Bovine serum albumin Sigma-Aldrich A4503
Anti-DNP monoclonal IgE Sigma-Aldrich D8406
DNP-HSA (Ag) Sigma-Aldrich A6661  Avoid direct light exposure
Hepes buffer 1M, pH 7.4 Biological Inductries 03-025-1B
CaCl2 MERK 102382
Glucose BDH Laboratories 284515V
Ammonium chloride MERK 1145
PIPES dipotassium salt Sigma-Aldrich 108321-27-3
Calcium acetate hydrate Sigma-Aldrich 114460-21-8
Magnesium acetate tetrahydrate Sigma-Aldrich M5661
Potassium glutamate (L-Glutamic acid potassium salt monohydrate) Sigma-Aldrich G1501
NaH2PO4 MERK 6346
NaCl MERK 106404
MgCl2 MERK 105833
KCl MERK 104936
Electroporator  BTX ECM830
Confocal microscope, Zeiss Zeiss LSM 5 Pascal, Axiovert 200M Used in Figure 3. Equipped with an electronic temperature-controlled
airstream incubator
Confocal microscope, Zeiss Zeiss LSM 800, Axio Observer.Z1 /7 Used in Figure 2. Equipped with a GaAsP detector an electronic temperature-controlled
airstream incubator
Confocal microscope, Leica Leica SP5 Used in Figure 1. Equipped with a leica HyD detector and an top-stage incubator (okolab)
RBL-2H3 cells RBL-2H3 cells were cloned in the lab of Reuben P. Siraganian. See reference 67

References

  1. Wu, L. -. G., Hamid, E., Shin, W., Chiang, H. -. C. Exocytosis and endocytosis: Modes, functions, and coupling mechanisms. Annu Rev Physiol. 76, 301-331 (2014).
  2. Pickett, J. A., Edwardson, J. M. Compound exocytosis: Mechanisms and functional significance. Traffic. 7 (2), 109-116 (2006).
  3. Behrendorff, N., Dolai, S., Hong, W., Gaisano, H. Y., Thorn, P. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) selectively required for sequential granule-to-granule fusion. J Biol Chem. 286 (34), 29627-29634 (2011).
  4. Kwan, E. P., Gaisano, H. Y. Glucagon-like peptide 1 regulates sequential and compound exocytosis in pancreatic islet beta-cells. Diabetes. 54 (9), 2734-2743 (2005).
  5. Hoppa, M. B., et al. Multivesicular exocytosis in rat pancreatic beta cells. Diabetologia. 55 (4), 1001-1012 (2012).
  6. Zhu, D., et al. Syntaxin-3 regulates newcomer insulin granule exocytosis and compound fusion in pancreatic beta cells. Diabetologia. 56 (2), 359-369 (2013).
  7. Vardjan, N., Jorgačevski, J., Stenovec, M., Kreft, M., Zorec, R. Compound exocytosis in pituitary cells. Ann N Y Acad Sci. 1152 (1), 63-75 (2009).
  8. Cochilla, A. J., Angleson, J. K., Betz, W. J. Differential regulation of granule-to-granule and granule-to-plasma membrane fusion during secretion from rat pituitary lactotrophs. J Cell Biol. 150 (4), 839-848 (2000).
  9. Mair, N., Haller, T., Dietl, P. Exocytosis in alveolar type II cells revealed by cell capacitance and fluorescence measurements. Am J Physiol. 276, 376-382 (1999).
  10. Carmo, L. A. S., et al. CD63 is tightly associated with intracellular, secretory events chaperoning piecemeal degranulation and compound exocytosis in human eosinophils. J Leukoc Biol. 100 (2), 391-401 (2016).
  11. Hafez, I., Stolpe, A., Lindau, M. Compound exocytosis and cumulative fusion in eosinophils. J Biol Chem. 278 (45), 44921-44928 (2003).
  12. Scepek, S., Lindau, M. Focal exocytosis by eosinophils – compound exocytosis and cumulative fusion. EMBO J. 12 (5), 1811-1817 (1993).
  13. Lollike, K., Lindau, M., Calafat, J., Borregaard, N. Compound exocytosis of granules in human neutrophils. J Leukoc Biol. 71 (6), 973-980 (2002).
  14. Mukai, K., Tsai, M., Starkl, P., Marichal, T., Galli, S. J. IgE and mast cells in host defense against parasites and venoms. Semin Immunopathol. 38 (5), 581-603 (2016).
  15. Galli, S. J., Tsai, M. IgE and mast cells in allergic disease. Nat Med. 18 (5), 693-704 (2012).
  16. Lundequist, A., Pejler, G. Biological implications of preformed mast cell mediators. Cell Mol Life Sci. 68 (6), 965-975 (2011).
  17. Blank, U. The mechanisms of exocytosis in mast cells. Adv Exp Med Biol. , 107-122 (2011).
  18. Cohen, R., Corwith, K., Holowka, D., Baird, B. Spatiotemporal resolution of mast cell granule exocytosis reveals correlation with Ca2+ wave initiation. J Cell Sci. 125 (12), 2986-2994 (2012).
  19. Harata, N. C., Aravanis, A. M., Tsien, R. W. Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. J Neurochem. 97 (6), 1546-1570 (2006).
  20. Cao, H., Chen, J., Awoniyi, M., Henley, J. R., McNiven, M. A. Dynamin 2 mediates fluid-phase micropinocytosis in epithelial cells. J Cell Sci. 120 (23), 4167-4177 (2007).
  21. Frost, B., Jacks, R. L., Diamond, M. I. Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem. 284 (19), 12845-12852 (2009).
  22. Saeed, M. F., Kolokoltsov, A. A., Albrecht, T., Davey, R. A. Cellular entry of ebola virus involves uptake by a macropinocytosis-Like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 6 (9), e1001110 (2010).
  23. Wang, J. T. H., Kerr, M. C., Karunaratne, S., Jeanes, A., Yap, A. S., Teasdale, R. D. The SNX-PX-BAR family in macropinocytosis: The regulation of macropinosome formation by SNX-PX-BAR proteins. PLoS One. 5 (10), e13763 (2010).
  24. Ohkuma, S., Poole, B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 75 (7), 3327-3331 (1978).
  25. Thorn, P., Jang, Y. Visualization of exocytosis in pancreatic acinar cells by fluorescence microscopy. Pancreapedia Exocrine Pancreas Knowl Base. , (2011).
  26. Jaiswal, J. K., Andrews, N. W., Simon, S. M. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol. 159 (4), 625-635 (2002).
  27. Jaiswal, J. K., Fix, M., Takano, T., Nedergaard, M., Simon, S. M. Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci. 104 (35), 14151-14156 (2007).
  28. Lima, W. C., Leuba, F., Soldati, T., Cosson, P. Mucolipin controls lysosome exocytosis in Dictyostelium. J Cell Sci. 125 (9), 2315-2322 (2012).
  29. Ravdin, J. I., Murphy, C. F., Schlesinger, P. H. The cellular regulation of vesicle exocytosis by Entamoeba histolytica. J Protozool. 35 (1), 159-163 (1988).
  30. Blott, E. J., Griffiths, G. M. Secretory lysosomes. Nat Rev Mol Cell Biol. 3 (2), 122-131 (2002).
  31. Raposo, G., Fevrier, B., Stoorvogel, W., Marks, M. S. Lysosome-related organelles: A view from immunity and pigmentation. CELL Struct Funct. 27 (6), 443-456 (2002).
  32. Gaudenzio, N., et al. Different activation signals induce distinct mast cell degranulation strategies. J Clin Invest. 126 (10), 3981-3998 (2016).
  33. Klein, O., et al. Rab5 is critical for SNAP23 regulated granule-granule fusion during compound exocytosis. Sci Rep. 7 (1), 15315 (2017).
  34. Ichikawa, A. Fine structural changes in response to hormonal stimulation of the perfused canine pancreas. J Cell Biol. 24 (3), 369-385 (1965).
  35. Bloom, G. D., Haegermark, &. #. 2. 1. 4. ;. A study on morphological changes and histamine release induced by compound 4880 in rat peritoneal mast cells. Exp Cell Res. 40 (3), 637-654 (1965).
  36. Bloom, G. D., Chakravarty, N. Time course of anaphylactic histamine release and morphological changes in rat peritoneal mast cells. Acta Physiol Scand. 78 (3), 410-419 (1970).
  37. Horsfield, G. I. The effect of compound 48/80 on the rat mast cell. J Pathol Bacteriol. 90 (2), 599-605 (1965).
  38. Alvarez de Toledo, G., Fernandez, J. M. Compound versus multigranular exocytosis in peritoneal mast cells. J Gen Physiol. 95 (3), 397-409 (1990).
  39. Fernandez, J. M., Neher, E., Gomperts, B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature. 312 (5993), 453-455 (1984).
  40. Oberhauser, A. F., Robinson, M., Fernandez, J. M. Simultaneous capacitance and amperometric measurements of exocytosis: A comparison. Biophys J. 71 (2), 1131-1139 (1996).
  41. Nagamatsu, S., Ohara-Imaizumi, M. Imaging exocytosis of single insulin secretory granules with TIRF microscopy. Methods Mol Biol. 440, (2008).
  42. Akopova, I., et al. Imaging exocytosis of ATP-containing vesicles with TIRF microscopy in lung epithelial A549 cells. Purinergic Signal. 8 (1), 59-70 (2012).
  43. Joselevitch, C., Zenisek, D. Imaging exocytosis in retinal bipolar cells with TIRF microscopy. J Vis Exp. (28), e1305 (2009).
  44. Axelrod, D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol. 89 (1), 141-145 (1981).
  45. Plattner, H., Artalejo, A. R., Neher, E. Ultrastructural organization of bovine chromaffin cell cortex-analysis by cryofixation and morphometry of aspects pertinent to exocytosis. J Cell Biol. 139 (7), 1709-1717 (1997).
  46. Eitzen, G. Actin remodeling to facilitate membrane fusion. Biochim Biophys Acta – Mol Cell Res. 1641 (2-3), 175-181 (2003).
  47. Becherer, U., Pasche, M., Nofal, S., Hof, D., Matti, U., Rettig, J. Quantifying exocytosis by combination of membrane capacitance measurements and total internal reflection fluorescence microscopy in chromaffin cells. PLoS One. 2 (6), e505 (2007).
  48. Wilson, J. D., Shelby, S. A., Holowka, D., Baird, B. Rab11 regulates the mast cell exocytic response. Traffic. 17 (9), 1027-1041 (2016).
  49. Makhmutova, M., Liang, T., Gaisano, H., Caicedo, A., Almaça, J. Confocal imaging of neuropeptide Y-pHluorin: A technique to visualize insulin granule exocytosis in intact murine and human islets. J Vis Exp. (127), e56089 (2017).
  50. Almaça, J., Liang, T., Gaisano, H. Y., Nam, H. G., Berggren, P. -. O., Caicedo, A. Spatial and temporal coordination of insulin granule exocytosis in intact human pancreatic islets. Diabetologia. 58, 2810-2818 (2015).
  51. Dominguez, N., van Weering, J. R. T., Borges, R., Toonen, R. F. G., Verhage, M. Dense-core vesicle biogenesis and exocytosis in neurons lacking chromogranins A and B. J Neurochem. 144 (3), 241-254 (2017).
  52. Burrone, J., Li, Z., Murthy, V. N. Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin. Nat Protoc. 1 (6), 2970-2978 (2007).
  53. Steyer, J. A., Horstmann, H., Almers, W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature. 388 (6641), 474-478 (1997).
  54. Zoccarato, F., Cavallini, L., Alexandre, A. The pH-sensitive dye acridine orange as a tool to monitor exocytosis/endocytosis in synaptosomes. J Neurochem. 72 (2), 625-633 (1999).
  55. Tsuboi, T., Rutter, G. A. Multiple forms of kiss-and-run exocytosis revealed by evanescent wave microscopy. Curr Biol. 13 (7), 563-567 (2003).
  56. Tsuboi, T., Zhao, C., Terakawa, S., Rutter, G. A. Simultaneous evanescent wave imaging of insulin vesicle membrane and cargo during a single exocytotic event. Curr Biol. 10 (20), 1307-1310 (2000).
  57. Tsuboi, T., Kikuta, T., Sakurai, T., Terakawa, S. Water secretion associated with exocytosis in endocrine cells revealed by micro forcemetry and evanescent wave microscopy. Biophys J. 83 (1), 172-183 (2002).
  58. Avery, J., et al. A cell-free system for regulated exocytosis in PC12 cells. J Cell Biol. 148 (2), 317-324 (2000).
  59. Larina, O., et al. Dynamic regulation of the large exocytotic fusion pore in pancreatic acinar cells. Mol Biol Cell. 18 (9), 3502-3511 (2007).
  60. Nemoto, T., et al. Sequential-replenishment mechanism of exocytosis in pancreatic acini. Nat Cell Biol. 3 (3), 253-258 (2001).
  61. Jaiswal, J. K., Chakrabarti, S., Andrews, N. W., Simon, S. M. Synaptotagmin VII restricts fusion pore expansion during lysosomal exocytosis. PLoS Biol. 2 (8), e233 (2004).
  62. Lasič, E., Stenovec, M., Kreft, M., Robinson, P. J., Zorec, R. Dynamin regulates the fusion pore of endo- and exocytotic vesicles as revealed by membrane capacitance measurements. Biochim Biophys Acta – Gen Subj. 1861 (9), 2293-2303 (2017).
  63. Bonnafous, P., Stegmann, T. Membrane perturbation and fusion pore formation in influenza hemagglutinin-mediated membrane fusion. A new model for fusion. J Biol Chem. 275 (9), 6160-6166 (2000).
  64. Balseiro-Gomez, S., Flores, J. A., Acosta, J., Ramirez-Ponce, M. P., Ales, E. Transient fusion ensures granule replenishment to maintain repeated release after IgE-mediated mast cell degranulation. J Cell Sci. 129 (21), 3989-4000 (2016).
  65. Eccleston, E., Leonard, B. J., Lowe, J. S., Welford, H. J. Basophilic leukaemia in the albino rat and a demonstration of the basopoietin. Nat New Biol. 244 (133), 73-76 (1973).
  66. Barsumian, E. L., Isersky, C., Petrino, M. G., Siraganian, R. P. IgE-induced histamine release from rat basophilic leukemia cell lines: isolation of releasing and nonreleasing clones. Eur J Immunol. 11 (4), 317-323 (1981).
  67. Azouz, N. P., Fukuda, M., Rothenberg, M. E., Sagi-Eisenberg, R. Investigating mast cell secretory granules; from biosynthesis to exocytosis. J Vis Exp. (95), e52505 (2015).
  68. Martin, T. F. J. Tuning exocytosis for speed: fast and slow modes. Biochim Biophys Acta – Mol Cell Res. 1641 (2-3), 157-165 (2003).
  69. Azouz, N. P., et al. Rab5 is a novel regulator of mast cell secretory granules: impact on size, cargo, and exocytosis. J Immunol. 192 (9), 4043-4053 (2014).
  70. Azouz, N. P., Matsui, T., Fukuda, M., Sagi-Eisenberg, R. Decoding the regulation of mast cell exocytosis by networks of Rab GTPases. J Immunol. 189 (5), 2169-2180 (2012).
  71. Beraldo, W. T., Silva, W. D., Fernandes, A. D. L. Ihibitory effects of carbohydrates on histamine release and mast cell disruption by dextran. Br J Pharmacol Chemother. 19 (3), 405-413 (1962).
  72. Oda, T., Kodama, N., Arizona, K. K. Ketotifen, a mast cell stabilizer, protects dextran sulfate sodium (DSS)-induced colitis in rats. Gastroenterology. 108 (4), a887 (1995).
  73. Sagi-Eisenberg, R., Geller-Bernstein, C., Ben-Neriah, Z., Pecht, I. Direct measurements of the dextran-dependent calcium uptake by rat peritoneal mast cells. FEBS Lett. 161 (1), 37-40 (1983).
  74. Hanahoe, T. H. Mechanism of histamine release from rat isolated peritoneal mast cells by dextran: the role of immunoglobulin E. Agents Actions. 14 (3-4), 468-474 (1984).
  75. Harris, J. M., West, G. B. Rats resistant to the dextran anaphylactoid reaction. Br J Pharmacol Chemother. 20, 550-562 (1963).
  76. Baxter, J. H., Adamik, R. Temperature dependence of histamine release from rat mast cells by dextran. Proc Soc Exp Biol Med. 146 (1), 71-74 (1974).
  77. Chakravarty, N., Goth, A., Sen, P. Potentiation of dextran-induced histamine release from rat mast cells by phosphatidyl serine. Acta Physiol Scand. 88 (4), 469-480 (1973).
  78. Baxter, J. H. Role of Ca++ in mast cell activation, desensitization, and histamine release by dextran. J Immunol. 111 (5), 1470-1473 (1973).
  79. Chen, H. -. Y., et al. Nanoimaging granule dynamics and subcellular structures in activated mast cells using soft X-ray tomography. Sci Rep. 6 (1), 34879 (2016).

Play Video

Citer Cet Article
Klein, O., Roded, A., Hirschberg, K., Fukuda, M., Galli, S. J., Sagi-Eisenberg, R. Imaging FITC-dextran as a Reporter for Regulated Exocytosis. J. Vis. Exp. (136), e57936, doi:10.3791/57936 (2018).

View Video