Summary

Imagem fotoeletrônica de ânions ilustrada por separação de 310 Nm de F−

Published: July 27, 2018
doi:

Summary

Aqui, apresentamos um protocolo para a imagem latente de fotoelétron de espécie aniônica. Ânions gerado no vácuo e separadas por espectrometria de massa são analisados usando fotoelétron velocidade mapeada de imagem, fornecendo detalhes de ânion e níveis de energia neutros, aniões e estrutura neutra e a natureza do estado eletrônico de ânion.

Abstract

Imagem de fotoelétron ânion é um método muito eficiente para o estudo dos Estados de energia do limite de íons negativos, espécies neutras e interações dos elétrons não acopladas com moléculas/átomos neutros. Estado-da-arte no vácuo técnicas de geração de ânion permitem a aplicação de uma ampla gama de atômica, molecular e sistemas de ânion de cluster. Estes são separados e selecionados utilizando espectrometria de massa de tempo-de-voo. Elétrons são removidos por fótons polarizados linearmente (descolamento de foto) usando fontes de laser de mesa que fornecem acesso às energias de excitação do infravermelho para o ultravioleta próximo. Detectar os photoelectrons com uma velocidade mapeados de imagem lente e posição sensível detector significa que, em princípio, cada fotoelétron atinge o detector e a eficiência da deteção é uniforme para todas as energias cinéticas. Espectros do fotoelétron extraídos as imagens através de reconstrução matemática usando um inverso de transformação Abel revelam detalhes sobre a distribuição de estado de energia interna de ânion e os Estados de energia neutra resultante. Em energia cinética de elétrons de baixa, resolução típica é suficiente para revelar as diferenças de nível de energia da ordem de alguns millielectron-volts, ou seja, diferentes níveis vibracionais para espécie molecular ou spin-órbita, dividindo-se em átomos. Distribuições angulares de fotoelétron extraídas a inversa da transformação de Abel representam as assinaturas do orbital do elétron ligado, permitindo mais detalhada da estrutura eletrônica de sondagem. Os espectros e distribuições angulares também codificam informações sobre as interacções entre o saída do elétron e as espécies neutras residuais na sequência de excitação. A técnica é ilustrada pela aplicação de um ânion atômica (F), mas também pode ser aplicado para a medição de espectroscopia molecular do ânion, o estudo das ressonâncias de ânion baixo mentiroso (como uma alternativa para experimentos de espalhamento) e femtosecond ( FS) tempo resolvido estudos da evolução dinâmica de ânions.

Introduction

Ânion fotoelétron imagem1 é uma variante em espectroscopia de fotoelétron e representa uma poderosa sonda da estrutura eletrônica atômica/molecular e as interações entre elétrons e espécies neutras. As informações obtidas são essencial no desenvolvimento da compreensão do limite e metaestável (ressonâncias de espalhamento elétron-molécula) negativa do íon Estados, Estados de porta para redução química, processos de penhora dissociativa e íon-molécula interações. Além disso, os resultados fornecem testes vitais de alto nível ab initio métodos teóricos, particularmente aqueles projetados para lidar com altamente correlacionaram, sistemas e/ou Estados não-estacionárias.

A técnica combina produção de iões, espectrometria de massa e partículas carregadas,2,3,4 sensìvel sonda electrónica (e para pequenas moléculas, vibracionais) estrutura de imagem. Trabalhar com espécies aniônicos permite boa seletividade em massa através do tempo de espectrometria de massa de voo (TOF-MS). Visible/perto ultravioleta (UV) fótons são suficientemente enérgicos para remover o elétron em excesso, permitindo o uso de fontes de laser superior da tabela. Um benefício adicional do uso de ânions é a capacidade de photoexcite baixas, instável aniônicos Estados que representam os regimes de energia sob a qual os elétrons e átomos/moléculas neutras fortemente interagem. O uso de velocidade mapeada de imagem5 (VMI) proporciona eficiência de deteção de uniforme, mesmo em energias cinéticas de elétrons de baixa, monitora todos os photoelectrons ejetados e simultaneamente revela a magnitude e direção das suas velocidades.

Os resultados experimentais são imagens de fotoelétron que contêm espectros do fotoelétron (detalhes das distribuições de energia interna do pai ânion) e as energias dos Estados internos neutro de filha e distribuições angulares de fotoelétron (relacionados com o elétron orbital antes o desapego). Uma aplicação particularmente interessante da técnica encontra-se em estudos de tempo-resolvido fs. Um pulso de laser ultra rápida inicial (bomba) excita a um estado eletrônico ânion dissociativa, e um segundo temporalmente adiada pulso ultra rápido (sonda) em seguida, desconecta os elétrons do ânion animado. O controle da diferença de tempo de bomba-sonda segue a evolução dos Estados de energia do sistema e a natureza mutável dos orbitais do sistema na escala de tempo do movimento atômico. Exemplos incluem o photodissociation de I2 e outra espécies interhalogen6,7,8,9, a fragmentação e/ou elétron Alojamento em I·uracil 10,11,12,13, eu·thymine13,14, eu·adenine15, eu·nitromethane16, 17 e eu·acetonitrile17 ânions de cluster e a revelação da até então inesperadamente longa escala de tempo para a produção de ânions atômica Cu após o photoexcitation de CuO2 18.

A Figura 1 mostra a Universidade de Washington em St. Louis (WUSTL) ânion fotoelétron imagem espectrômetro19. O instrumento consiste de três regiões diferencialmente bombeadas. Íons são produzidos na câmara de origem que opera a uma pressão de 10-5 Torr e contém uma descarga iônica fonte20e placa de extração de íon eletrostático. Íons são separados em massa em um Wiley-McLaren TOF-MS21 (a pressão no tubo de TOF é 10-8 Torr). Deteção de íon e sondagem ocorre na região de deteção (pressão de 10−9 Torr) que contém uma lente VMI5 e um detector de partículas carregadas. Os componentes principais do instrumento são ilustrados esquematicamente na Figura 1b , onde a região sombreada representa todos os elementos contidos dentro do sistema de vácuo. Gás é introduzido através do bocal pulsado a descarga. Para compensar a alta pressão, a câmara de origem é mantida sob vácuo usando uma bomba de difusão à base de óleo. A região de descarga é ilustrada em mais detalhes na Figura 2a. Uma alta diferença de potencial é aplicada entre os eletrodos, que são isolados da face do bico por uma série de espaçadores de Teflon. Na verdade, o Teflon atua como a fonte de átomos de flúor para os resultados mostrados mais tarde.

A quitação produz uma mistura de ânions, cátions e espécies neutras. A placa de extração de íon, pilha de aceleração de íons, potencial interruptor e detector de microchannel plate (MCP) (Figura 1b) formam a 2m longo Wiley McLaren TOF-MS. íons são extraídos através da aplicação de um pulso de tensão (negativo) para a placa de extração de íons e Então todos os iões são acelerados para a mesma energia cinética. Variação da amplitude de pulso de extração concentra-se o tempo de chegada na lente VMI enquanto a lente einzel reduz a secção espacial do feixe de íons. Ânions são re-referenciados para a terra usando um potencial interruptor22, o timing da qual atua como um discriminador de massa. Seleção de ânion é conseguida sincronizando a chegada de um pulso de fóton visível/perto de uv com o tempo de chegada do ânion na lente VMI. As regiões de separação e deteção do íon usam óleo livre rachaduras para proteger o sensor de imagem.

Ânions e fótons interagem para produzir photoelectrons em todo o volume espacial do sólido Steinmetz, que representa a sobreposição entre os feixes de laser e íon. A lente VMI (Figura 2b) consiste de três eletrodos abertos, cujo objectivo é garantir que todos os photoelectrons atingem o detector e que a distribuição de espaço do impulso das photoelectrons é mantida. Para conseguir isso, diferentes voltagens são aplicadas para o extrator e repelente de tal que, independentemente do ponto de origem de espacial, elétrons com o mesmo vetor velocidade inicial são detectados no mesmo ponto no detector. O detector consiste de um conjunto de CIM chevron-combinadas que atuam como multiplicadores de elétron. Cada canal tem um diâmetro da ordem de alguns mícrons, localizando o ganho e preservando a posição de impacto inicial. Uma tela de fósforo atrás o CIM indica a posição através do pulso amplificado elétron como um flash de luz que é gravado usando uma câmera de dispositivo acoplado (CCD) de carga.

O calendário e a duração dos vários pulsos tensão necessários são controlados usando um par de geradores delay digital (DDG, Figura 3). Todo o experimento é repetido em uma base de tiro por tiro, com uma taxa de repetição de 10 Hz. Para cada tiro, vários íons e fótons interagem produzindo alguns eventos de detecção por quadro de câmera. Vários milhares de quadros são acumulados em uma imagem. Centro da imagem representa a origem do espaço de impulso e, portanto, a distância do centro (r) é proporcional à velocidade de um elétron. Ângulo θ, (em relação a direção de polarização de fótons) representa a direção da velocidade de um elétron. Uma imagem contém a distribuição de densidades de evento de deteção. Assim, ele também pode ser visto como representando a densidade de probabilidade para a deteção (em um determinado ponto) de um elétron. Invocando a interpretação de Born da função de onda (ψ) representa uma imagem | ψ | 2 para o fotoelétron23.

A densidade de probabilidade do elétron 3D é cilindricamente simétrica sobre a polarização do vetor elétrico (εp) da radiação, com consequente scrambling de informações. Reconstrução da distribuição original é alcançada matematicamente24,25,26,27. A distribuição radial na reconstrução (de elétrons) é o espectro de fotoelétron de domínio dinâmica (velocidade) que é convertido no domínio de energia através da aplicação da transformação Jacobian apropriada.

O fotoelétron ânion imaging spectrometer (Figura 1) usada nesses experimentos é um instrumento Custom-Built28. As configurações na tabela 1 e tabela 2 para o protocolo são específicas para este instrumento para a produção de F e a imagem latente de sua distribuição de fotoelétron. Várias versões similares do projeto são utilizadas em várias pesquisas laboratórios6,29,30,31,32,33,34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42, mas não há dois instrumentos são exatamente iguais. Além disso, os ajustes do instrumento são fortemente interdependentes e altamente sensível a pequenas mudanças em condições e dimensões do instrumento.

Protocol

Nota: Um protocolo experimental geral é aqui apresentado, específicas para o instrumento WUSTL. Configurações do instrumento específico para a imagem de F− apresentado na figura 4a podem ser encontradas na tabela 1-2. 1. íon geração Para gerar ânions, aplicar um revestimento protetor gás ou mistura de gases (para F−, 40 psig. de O2) por trás do bocal pulsado e operar o bocal a 10 Hz. <l…

Representative Results

Por centroiding43 os dados registados na matriz de 640 × 480 pixel CCD da câmera, uma resolução de grade de 6400 × 4800 é possível. No entanto, extração dos espectros e distribuições angulares envolve inversa da transformação de Abel dos dados que requer a intensidade da imagem para variar relativamente lisamente. Como um compromisso, os dados centroided é “guardados” somando n × n blocos de pontos. Tratamento semelhante é também necessário para a…

Discussion

Dois fatores são particularmente críticos para o sucesso do protocolo descrito. As melhores condições de velocidade possível mapeamento devem ser determinadas e mais crucialmente, um suficiente e tempo relativamente invariável rendimento do ânion desejado deve ser produzido. Em relação a VMI focando as etapas, passos, 5.2 e 5.3 devem ser repetidos em conjunto com a análise de imagem para determinar a condição que dá as características de imagem mais nítidas (mais estreitos). Ajuste fino das tensões eletro…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Este material é baseado em trabalho, apoiado pela Fundação Nacional de ciência sob CHE – 1566157

Materials

Digital Delay Generators Berkeley Nucleonics Corp. 565-8c DDG1
Digital Delay Generators Berkeley Nucleonics Corp. 577-8c DDG2
HV Power Supplies Stanford Research Systems PS325 V3
HV Power Supplies Stanford Research Systems PS325 V2
HV Power Supplies Stanford Research Systems PS325 V5
HV Power Supplies Burle Inc. PF1053 V9
HV Power Supplies Burle Inc. PF1053 V4
HV Power Supplies Burle Inc. PF1053 V10
HV Power Supplies Burle Inc. PF1054 V9,V11
HV Power Supplies Bertan 205B-05R V6
HV Pulsers Directed Energy Inc. PVX-4150 V2
HV Pulsers Directed Energy Inc. PVX-4140 V1
HV Pulsers Directed Energy Inc. PVX-4140 V11
HV Pulsers Directed Energy Inc. PVX-4140 V3
Pulsed Nozzle Driver Parker Hannifin (General Valve) Iota-One
Pulsed Nozzle Parker Hannifin (General Valve) Series 9
Camera Imperx VGA120
Imaging Detector Beam Imaging Systems BOS40
Oscilloscope LeCroy Wavejet 334
Photodiode ThorLabs DET10A
Diffusion Pump Leybold DIP 8000
2×Turbo Pump Leybold TMP361
Rotary Pump Leybold D40B
2×Rotary Pump Leybold D16B
Oxygen Gas Praxair OX 5.0RS
Tunable Laser Spectra Physics Sirah Dye Laser Cobra-Stretch
Pump laser for Dye Laser Sepctra Physics Nd:YAG INDI-10

References

  1. Sanov, A., Mabbs, R. Photoelectron imaging of negative ions. International Reviews in Physical Chemistry. 27 (1), 53-85 (2008).
  2. Chandler, D. W., Houston, P. L. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. Journal of Chemical Physics. 87 (2), 1445-1447 (1987).
  3. Chandler, D. W., Cline, J. I. Ion imaging applied to the study of chemical dynamics. Advanced series in physical chemistry. 14 (1), 61 (2004).
  4. Whitaker, B. J. . Imaging in molecular dynamics technology and applications. , (2004).
  5. Eppink, A. T. J. B., Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses – application in photoelectron and photofragment ion imaging of molecular-oxygen. Review of Scientific Instruments. 68 (9), 3477-3484 (1997).
  6. Davis, A. V., Wester, R., Bragg, A. E., Neumark, D. M. Time resolved photoelectron imaging of the photodissociation of I2-. Journal of Chemical Physics. 118 (3), 999-1002 (2003).
  7. Mabbs, R., Pichugin, K., Surber, E., Sanov, A. Time resolved electron detachment imaging of the I- channel in I2Br- photodissociation. Journal of Chemical Physics. 121 (1), 265-271 (2004).
  8. Mabbs, R., Pichugin, K., Sanov, A. Time Resolved imaging of the reaction coordinate. Journal of Chemical Physics. 122 (17), 174305 (2005).
  9. Mabbs, R., Pichugin, K., Sanov, A. Dynamic molecular interferometer: Probe of inversion symmetry in I2- photodissociation. Journal of Chemical Physics. 123 (5), 054329 (2005).
  10. Li, W. -. L., et al. Photodissociation dynamics of the iodide-uracil (I-U) complex. Journal of Chemical Physics. 145 (4), 044319 (2016).
  11. King, S. B., Yandell, M. A., Stephansen, A. B., Neumark, D. M. Time-resolved radiation chemistry: Dynamics of electron attachment to uracil following UV excitation of iodide-uracil complexes. Journal of Chemical Physics. 141 (22), 224310 (2014).
  12. Yandell, M. A., King, S. B., Neumark, D. M. Time-resolved radiation chemistry: Photoelectron imaging of transient negative ions of nucleobases. Journal of the American Chemical Society. 135 (6), 2128-2131 (2013).
  13. King, S. B., Yandell, M. A., Neumark, D. M. Time-resolved photoelectron imaging of the iodide-thymine and iodide-uracil binary cluster systems. Faraday Dicsussions. 163, 59-72 (2013).
  14. King, S. B., et al. Electron accomodation dynamics in the DNA base thymine. Journal of Chemical Physics. 143 (2), 024312 (2015).
  15. Stephansen, A. B., et al. Dynamics of dipole- and valence bound anions in iodide-adenine binart complexes: A time-resolved photoelectron imaging and quantum mechanical investigation. Journal of Chemical Physics. 143 (10), 104308 (2015).
  16. Kunin, A., Li, W. -. L., Neumark, D. M. Time-resolved photoelectron imaging of iodide-nitromethane (I−·CH3NO2) photodissociation dynamics. Physical Chemistry Chemical Physics. 18 (48), 33226-33232 (2016).
  17. Yandell, M. A., King, S. B., Neumark, D. M. Decay dynamics of nascent acetonitrile and nitromethane dipole-bound anions produced by intracluster charge-transfer. Journal of Chemical Physics. 140 (18), 184317 (2014).
  18. Mabbs, R., Holtgrewe, N., Dao, D., Lasinski, J. Photodetachment and photodissociation of the linear CuO2− molecular anion: Energy and time dependence of Cu− production. Physical Chemistry Chemical Physics. 16 (2), 497-504 (2014).
  19. Mbaiwa, F., Van Duzor, M., Wei, J., Mabbs, R. Direct and auto-detachment in the iodide-pyrrole cluster anion: The role of dipole bound and neutral cluster states. Journal of Physical Chemistry A. 114 (3), 1539-1547 (2010).
  20. Osborn, D. L., Leahy, D. J., Cyr, D. M., Neumark, D. M. Photodissociation spectroscopy and dynamics of the N2O2− anion. Journal of Chemical Physics. 104 (13), 5026-5039 (1996).
  21. Wiley, W. C., McLaren, I. H. Time-of-flight mass spectrometer with improved resolution. Review of Scientific Instruments. 26 (12), 1150-1157 (1955).
  22. Posey, L. A., DeLuca, M. J., Johnson, M. A. Demonstration of a pulsed photoelectron spectrometer on mass selected negative ions: O-, O2-, AND O4-. Chemical Physics Letters. 131 (3), 170-174 (1986).
  23. Born, M. The statistical interpretation of Quantum Mechanics. Nobel Lecture. , (1954).
  24. Dribinski, V., Ossadtchi, A., Mandelshtam, V. A., Reisler, H. Reconstruction of Abel-transformed images: The Gaussian basis set expansion Abel transform method. Review of Scientific Instruments. 73 (7), 2634-2642 (2002).
  25. Hansen, E. W., Law, P. -. L. Recursive methods for computing the Abel transform and its inverse. Journal of the Optical Society of America A. 2 (4), 510-519 (1985).
  26. Dasch, C. J. One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. Applied Optics. 31 (8), 1146-1152 (1992).
  27. Manzhos, S., Loock, H. -. P. Photofragment image analysis using the Onion-Peeling algorithm. Computer Physics Communications. 154 (1), 76-87 (2003).
  28. Van Duzor, M., Mbaiwa, F., Wei, J., Mabbs, R. The effect of intra-cluster photoelectron interactions on the angular distribution in I-CH3I photodetachment. Journal of Chemical Physics. 131 (20), 204306 (2009).
  29. Surber, E., Ananthavel, S. P., Sanov, A. Nonexistent electron affinity of OCS and the stabilization of carbonyl sulfide anions by gas phase hydration. Journal of Chemical Physics. 116 (5), 1920-1929 (2002).
  30. Velarde, L., Habteyes, T., Sanov, A. Photodetachment and photofragmentation pathwaysin the [(CO2)2(H2O)m]− cluster anions. Journal of Chemical Physics. 125 (11), 114303 (2006).
  31. Rathbone, G. J., Sanford, T., Andrews, D., Lineberger, W. C. Photoelectron imaging spectroscopy of Cu-(H2O)1,2 anion complexes. Chemical Physics Letters. 401 (4-6), 570-574 (2005).
  32. Leon, I., Yang, Z., Liu, H. -. T., Wang, L. -. S. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters. Review of Scientific Instruments. 85 (8), 083106 (2014).
  33. Silva, W. R., Cao, W., Yang, D. -. S. Low-energy photoelectron imaging spectrsocopy of Lan(benzene) (n = 1 and 2). Journal of Physical Chemistry A. 121 (44), 8440-8447 (2017).
  34. Mann, J. E., Troyer, M. E., Jarrold, C. C. Photoelectron imaging and photodissociation of ozonide in O3-·(O2)n (n = 1-4) clusters. Journal of Chemical Physics. 142 (12), 124305 (2015).
  35. Horke, D. A., Roberts, G. M., Lecointre, J., Verlet, J. R. R. Velocity-map imaging at low extraction fields. Review of Scientific Instruments. 83 (6), 063101 (2012).
  36. Osterwalder, A., Nee, M. J., Zhou, J., Neumark, D. M. High resolution photodetachment spectroscopy of negative ions via slow photoelectron imaging. Journal of Chemical Physics. 121 (13), 6317-6322 (2004).
  37. Liu, Q. -. Y., et al. Photoelectron imaging spectrsocopy of MoC- and NbN- diatomic anions: a comparitive study. Journal of Chemical Physics. 142 (16), 164301 (2015).
  38. Sobhy, M. A., Castleman, A. W. Photoelectron imaging of copper and silver mono- and diamine anions. Journal of Chemical Physics. 126 (15), 154314 (2007).
  39. Qin, Z., Wu, X., Tang, Z. Note: A novel dual-channel time-of-flight mass spectrometer for photoelectron imaging spectroscopy. Review of Scientific Instruments. 84 (6), 066108 (2013).
  40. Xie, H., et al. Probing the structural and electronic properties of AgnH− (n = 1-3) using photoelectron imaging and theoretical calculations. Journal of Chemical Physics. 136 (18), 184312 (2012).
  41. Adams, C. L., Schneider, H., Ervin, K. M., Weber, J. M. Low-energy photoelectron imaging spectroscopy of nitromethane anions: Electron affinity, vibrational features, anisotropies, and the dipole-bound state. Journal of Chemical Physics. 130 (7), 074307 (2009).
  42. Cavanagh, S. J., et al. High-Resolution velocity map imaging photoelectron spectroscopy of the O- photodetachment fine-structure transitions. Physical Review A. 76 (5), 052708 (2007).
  43. Li, W., Chambreau, S. D., Lahankar, S. A., Suits, A. G. Megapixel imaging with standard video. Review of Scientific Instruments. 76 (6), 063106 (2005).
  44. Blondel, C., Delsart, C., Goldfarb, F. Electron spectrometry at the µeV level and the electron affinities of Si and F. Journal of Physics B. 34 (9), L281-L288 (2001).
  45. Mabbs, R., Grumbling, E. R., Pichugin, K., Sanov, A. Photoelectron imaging: An experimental window into electronic structure. Chemical Society Reviews. 38 (8), 2169-2177 (2009).
  46. Grumbling, E. R., Pichugin, K., Mabbs, R., Sanov, A. Photoelectron Imaging as a quantum chemistry visualization tool. Journal of Chemical Education. 88 (11), 1515-1520 (2011).
  47. Gascooke, J. R., Gibson, S. T., Lawrance, W. D. A "circularisation" method to repair deformations and determine the centre of velocity map images. Journal of Chemical Physic. 147 (1), 013924 (2017).
  48. Xing, X. -. P., Wang, X. -. B., Wang, L. -. S. Photoelectron angular distribution and molecular structure in multiply charged anions. Journal of Physical Chemistry A. 113 (6), 945-948 (2008).
  49. Tsuboi, T., Xu, E. Y., Bae, Y. K., Gillen, K. T. Magnetic bottle electron spectrometer using permanent magnets. Review of Scientific Instruments. 59 (6), 1357-1362 (1988).
  50. Kruit, P., Read, F. H. Magnetic field paralleliser for 2π electron-spectrometer and electron image magnifier. Journal of Physics E. 16 (4), 313-324 (1983).
  51. Travers, M. J., Cowles, D. C., Clifford, E. P., Ellison, G. B., Engelking, P. C. Photoelectron spectroscopy of the CH3N- ion. Journal of Chemical Physics. 111 (12), 5349-5360 (1999).
  52. Ellis, H. B., Ellison, G. B. Photoelectron spectroscopy of HNO− and DNO−. Journal of Chemical Physics. 78 (11), 6541-6558 (1983).
  53. Cavanagh, S. J., Gibson, S. T., Lewis, B. R. High-resolution photoelectron spectroscopy of linear← bent polyatomic photodetachment transitions: The electron affinity of CS2. Journal of Chemical Physics. 137 (14), 144304 (2012).
  54. Neumark, D. M. Slow electron velocity-map imaging of negative Ions: Applications to spectroscopy and dynamics. The Journal of Physical Chemistry A. 112 (51), 13287-13301 (2008).
  55. Weichman, M. L., Kim, J. B., Neumark, D. M. Rovibronic structure in slow photoelectron velocity-map imaging spectroscopy of CH2CN- and CD2CN-. Journal of Chemical Physics. 140 (10), 104305 (2014).
  56. Huang, D. -. L., Zhu, G. -. Z., Liu, Y., Wang, L. -. S. Photodetachment spectroscopy and resonant photoelectron imaging of cryogenically-cooled deprotonated 2-hydroxypyrimidine anions. Journal of Molecular Spectroscopy. 332, 86-93 (2017).
  57. Van Duzor, M., et al. Vibronic coupling in the superoxide anion: The vibrational dependence of the photoelectron angular distribution. Journal of Chemical Physics. 133 (17), 174311 (2010).
  58. Mabbs, R., et al. Observation of vibration-dependent electron anisotropy in O2- photodetachment. Physical Review A. 82 (1), (2010).
  59. Dao, D. B., Mabbs, R. The effect of the dipole bound state on AgF− vibrationally resolved photodetachment cross sections and photoelectron angular distributions. Journal of Chemical Physics. 141 (15), 154304 (2014).
  60. Jagau, T. C., Dao, D. B., Holtgrewe, N., Krylov, A. I., Mabbs, R. Same but Different: Dipole-Stabilized Shape Resonances in CuF− and AgF. Journal of Physical Chemistry Letters. 6 (14), 2786-2793 (2015).
  61. Lyle, J., Wedig, O., Gulania, S., Krylov, A. I., Mabbs, R. Channel branching ratios in CH2CN−photodetachment: Rotational structure and vibrational energy redistribution in autodetachment. Journal of Chemical Physics. 147 (23), 234309 (2017).
check_url/fr/57989?article_type=t

Play Video

Citer Cet Article
Lyle, J., Chandramoulee, S. R., Hart, C. A., Mabbs, R. Photoelectron Imaging of Anions Illustrated by 310 Nm Detachment of F. J. Vis. Exp. (137), e57989, doi:10.3791/57989 (2018).

View Video