Summary

Неразрушающего контроля развития разложению на основе эшафот инженерии тканей кровеносных сосудов с использованием оптическая когерентная томография

Published: October 03, 2018
doi:

Summary

Шаг за шагом протокол для неразрушающего контроля и длительного периода наблюдения за процессом сосудистого ремоделирования и эшафот деградации в реальном времени культуры биоразлагаемые полимерные основанных на эшафот инженерии тканей кровеносных сосудов с пульсирующего стимуляции Здесь описывается использование оптическая когерентная томография.

Abstract

Инженерии сосудистых имплантатов с структурно-механические свойства, аналогичные природные кровеносных сосудов, как ожидается, удовлетворять растущий спрос на артериальной объездной. Характеристика динамики роста и модернизации процесса разложению полимер на основе эшафот инженерии тканей кровеносных сосудов (TEBVs) с пульсирующего стимуляции имеет решающее значение для сосудистой тканевой инженерии. Оптические методы визуализации выделяются как мощные инструменты для мониторинга васкуляризации инженерии тканей позволяет с высоким разрешением изображений в реальном времени культуры. Этот документ демонстрирует неразрушающего и быстро в реальном времени визуализации стратегии для мониторинга роста и реконструкции TEBVs в долгосрочные культуры с помощью оптическая когерентная томография (Окт). Оценивается геометрические морфологии, включая сосудистого ремоделирования процесс, толщина стенок и Сравнение толщины TEBV в моменты времени различные культуры и наличие пульсирующего стимуляции. Наконец OCT предоставляет практические возможности для реального времени наблюдения деградации полимера в реконструкции тканях под пульсирующего стимуляции или не и в каждом сегменте судна, по сравнению с оценкой использования деградации полимера Сканирование, microscopic(SEM) электронов и поляризационный микроскоп.

Introduction

Ткани инженерии кровеносных сосудов (TEBVs) является наиболее перспективных материалов как идеальный сосудистого трансплантата1. Для того, чтобы развивать графтов клинически полезным с аналогичными структурных и функциональных свойств как родной судов, были разработаны несколько методов для поддержания функции сосудистого2,3. Хотя там были инженерии судов с приемлемым проходимость ставок во время имплантации и клиническое исследование III фазы4, долгосрочные культуры и высокой стоимости также показывают необходимость наблюдения за развитием TEBVs. Понимание процессов роста, модернизация и адаптация внеклеточные matrix(ECM) в TEBVs в среде химико механические biomimetic может предоставить важную информацию для развития сосудистой тканевой инженерии.

Идеальной стратегии для отслеживания развития инженерии судов малого диаметра5 должно быть неразрушающего контроля, стерильные, продольная, трехмерные и количественные. TEBVs условиях различные культуры могут оцениваться этой модальности изображений, включая даже изменения до и после трансплантации сосудов. Необходимо разработать стратегии для описания особенностей жизни инженерии судов. Оптические методы визуализации позволяют визуализации и количественной оценки осаждения ткани и биоматериалов. Другими преимуществами являются возможность включить глубокие ткани и этикетка бесплатные изображения с высоким разрешением6,7. Однако изображение конкретных молекул и менее легко доступны оптического оборудования для мониторинга в реальном времени является значительное практическое препятствие, которое имеет ограниченную широкое применение нелинейной оптической микроскопии. Оптическая когерентная томография (Окт) — это оптический подход с внутрисосудистого изображений модальности как широко используется клинический инструмент направлять сердечной интервенционной терапии8. В литературе метод октября было сообщено о том, как способ оценки толщины стенок TEBVs9,10, в сочетании с позитивных изображений условия для сосудистых тканей инженерных исследований. В то время как динамика инженерии сосудистой роста и реконструкции не наблюдалось.

В этой рукописи мы подробно подготовку биоразлагаемые полимерные основанных на эшафот TEBVs для четырех недель культуры. Человека пупочных артерий сосудистой гладкомышечные клетки (HUASMCs) расширил и посеяны в пористых разложению Полигликолидная кислота (PGA) леса в биореактор. Биоразлагаемые полимеры играть роль в временной субстрат для тканевой инженерии и имеют определенные11деградации ставка. С тем чтобы обеспечить соответствующий матч между деградацией лесов и нео-ткани, ECM и PGA подмостей являются важнейшими факторами для эффективного сосудистого ремоделирования. Система перфузии имитирует биомеханических микроокружения родной судов и поддерживает последовательную деформации под давлением стимуляции.

Цель представленных протокола-изложить стратегию относительно простой и неразрушающего контроля для TEBVs изображений и долгосрочный мониторинг культуры. Этот протокол может использоваться для визуализации морфологических изменений и измерения толщины инженерии судов в условиях иной культуры. Кроме того можно выполнить анализ деградации материалов на основе полимеров в ткани, инженерные строительные леса для идентификации. Комбинируя методы сканирования электрон microscopic(SEM) и поляризационный микроскоп, используемые в этот протокол, корреляции и количественной оценки распределения внеклеточного матрикса и PGA деградации может быть сделано, которая может содействовать оценке эшафот деградация в сочетании с октября изображений.

Protocol

1. разложению PGA леску на основе культуры ткани инженерии судов Изготовление PGA эшафот Шить PGA сетки (диаметром 19 мм и толщиной 1 мм) вокруг Силиконовая трубка, стерилизована окисью этилена (длина 17 см, диаметр 5.0 мм и толщиной 0,3 мм) с помощью швов 5-0. Шить политетрафторэтилен?…

Representative Results

Система трехмерного культуры состояла из палаты культуры в биореактор и перфузии системы с замкнутым циклом жидкости10,13 (рис. 1). Окт изображений катетер был вставлен в дистальный конец Y-Джанкшн и вытащил обратно в силик?…

Discussion

Для создания инженерии судов с структурных и механические свойства аналогичны родной кровеносных сосудов может привести к сократить время для клинического использования и является конечной целью сосудистой техники. Оптические методы визуализации позволяют визуализации сосудистой …

Divulgations

The authors have nothing to disclose.

Acknowledgements

Мы хотели бы отметить науки и технологии планирования проекта в провинции Гуандун Китая (2016B070701007) для поддержки этой работы.

Materials

PGA mesh Synthecon
silicone tube Cole Parmer
connector Cole Parmer
intravascular OCT system St. Jude Medical, Inc ILUMIEN™ OPTIS™ SYSTEM
scanning electron microscopic Philips  FEI Philips XL-30
polarized microscope Olympus Olympus BX51
sutures Johnson & Johnson
pulsatile pump Guangdong Cardiovascular Institute
LightLab Imaging software St. Jude Medical, Inc

References

  1. Chan-Park, M. B., et al. Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue-engineered small-diameter blood vessels. Journal of Biomedical Materials Research Part A. 88, 1104-1121 (2009).
  2. Ballyns, J. J., Bonassar, L. J. Image-guided tissue engineering. Journal of Cellular & Molecular Medicine. 13, 1428-1436 (2009).
  3. Smith, L. E., et al. A comparison of imaging methodologies for 3D tissue engineering. Microscopy Research & Technique. 73, 1123-1133 (2010).
  4. Chang, W. G., Niklason, L. E. A short discourse on vascular tissue engineering. NPJ Regenerative Medicine. 2, (2017).
  5. Appel, A. A., Anastasio, M. A., Larson, J. C., Brey, E. M. Imaging challenges in biomaterials and tissue engineering. Biomaterials. 34, 6615-6630 (2013).
  6. Rice, W. L., et al. Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy. Biomaterials. 29, 2015-2024 (2008).
  7. Niklason, L. E., et al. Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proceedings of the National Academy of Sciences of the United States of America. , 3335-3339 (2010).
  8. Zheng, K., Rupnick, M. A., Liu, B., Brezinski, M. E. Three Dimensional OCT in the Engineering of Tissue Constructs: A Potentially Powerful Tool for Assessing Optimal Scaffold Structure. Open Tissue Engineering & Regenerative Medicine Journal. 2, 8-13 (2009).
  9. Gurjarpadhye, A. A., et al. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT. Lasers in Surgery and Medicine. 45, 391-400 (2013).
  10. Chen, W., et al. In vitro remodeling and structural characterization of degradable polymer scaffold-based tissue-engineered vascular grafts using optical coherence tomography. Cell & Tissue Research. 370, 417-426 (2017).
  11. Naito, Y., et al. Characterization of the natural history of extracellular matrix production in tissue-engineered vascular grafts during neovessel formation. Cells Tissues Organs. 195, 60-72 (2012).
  12. Ye, C., et al. The design conception and realization of pulsatile ventricular assist devices-from Spiral-Vortex pump to Luo-Ye pump. Chinese Journal of Thoracic and Cardiovascular Surgery. 9, 35-40 (2002).
  13. Chen, W., et al. Application of optical coherence tomography in tissue engineered blood vessel culture based on Luo-Ye pump. Chinese Journal of Thoracic and Cardiovascular Surgery. 31, 687-690 (2015).
  14. Pickering, J. G., Boughner, D. R., et al. Quantitative assessment of the age of fibrotic lesions using polarized light microscopy and digital image analysis. American Journal of Pathology. 138, 1225-1231 (1991).
  15. Martinho, J. A., et al. Dependence of optical attenuation coefficient and mechanical tension of irradiated human cartilage measured by optical coherence tomography. Cell Tissue Bank. 16, 47-53 (2015).
  16. Poirierquinot, M., et al. High-resolution 1.5-Tesla magnetic resonance imaging for tissue-engineered constructs: a noninvasive tool to assess three-dimensional scaffold architecture and cell seeding. Tissue Engineering Part C Methods. 16, 185-200 (2010).
  17. Naito, Y., et al. Beyond burst pressure: initial evaluation of the natural history of the biaxial mechanical properties of tissue-engineered vascular grafts in the venous circulation using a murine model. Tissue Engineering Part A. 20, 346-355 (2014).
  18. Smart, N., Dube, K. N., Riley, P. R. Coronary vessel development and insight towards neovascular therapy. International Journal of Clinical and Experimental Pathology. 90, 262-283 (2009).
check_url/fr/58040?article_type=t

Play Video

Citer Cet Article
Chen, W., Liu, S., Yang, J., Wu, Y., Ma, W., Lin, Z. Nondestructive Monitoring of Degradable Scaffold-Based Tissue-Engineered Blood Vessel Development Using Optical Coherence Tomography. J. Vis. Exp. (140), e58040, doi:10.3791/58040 (2018).

View Video