Summary

脊柱外科术中超声

Published: August 17, 2022
doi:

Summary

在这里,我们提出了在脊柱手术中使用术中超声的方案,特别是在使用后路时硬膜内病变和腹侧椎管病变的情况下。

Abstract

自20世纪80年代以来,有几份报告称术中超声作为脊柱手术的有用辅助手段。然而,随着更新的尖端成像方式的出现,术中超声在脊柱手术中的应用在很大程度上已经失宠。尽管如此,与其他术中技术(如磁共振成像和计算机断层扫描)相比,术中超声继续提供一些优势,包括更具成本效益,高效且易于操作和解释。此外,它仍然是实时可视化软组织和病理的唯一方法。本文重点介绍术中超声的优点,特别是在硬膜内病变和向后接近时腹侧至鞘囊的病变病例。

Introduction

超声是医学上最常见的诊断工具之一,特别是用于观察腹部,四肢和颈部的病理。然而,其用于研究颅骨和脊柱病变目前尚未得到广泛使用。1978年,里德是第一个报告使用超声波可视化宫颈带囊性星形细胞瘤1的人。在这里,在患者颈部弯曲的情况下进行扫描,以允许打开层内窗口。四年后,在1982年,Dohrmann和Rubin报告了在术中超声在10名患者中可视化硬膜内空间2。在10例患者中,术中超声发现的病理包括脊髓空洞症,脊髓囊肿以及髓内和髓外肿瘤。他们进一步证明了使用术中超声引导导管和探针进行肿瘤活检,囊肿引流和心室分流导管放置3。这允许对探头/导管进行实时监控和精确定位,从而减少放置中的不准确和错误。在这些初步报告之后,其他几个人已经发表了使用术中超声引导脊髓囊肿引流,髓内和髓外肿瘤切除以及注射器 – 蛛网膜下腔分流导管放置45678910.此外,还显示轴内实体脑肿瘤和脊髓硬膜内肿瘤的完全切除率1112。术中超声也被证明可用于组织操作前的术中手术计划以及随后在脊柱骨折患者中充分神经元件减压的可视化79131415

随着较新的术中技术的出现,可以更清晰地可视化软组织,例如磁共振成像(MRI)和计算机断层扫描(CT),术中超声已经变得不那么常见,并且在今天的神经外科医生中不太受欢迎16。然而,在某些手术病例中,术中超声可能比这些新技术具有优势(表 1)。术中超声显示,与术中 CT (iCT) 或锥形束 CT (cbCT) 相比,硬膜内结构的软组织可视化效果更好 917。虽然术中MRI(iMRI)在可用的情况下是有用的,因为它提供了更高的软组织分辨率,但它是昂贵的,耗时的,并且不能提供实时图像6 1618。一个例子是硬膜内肿块腹侧到膜囊的情况,外科医生无法直接可视化。此外,尽管依赖于操作人员,但根据我们的经验,术中超声使用起来相当简单,无需放射科医生即可轻松读取。

Protocol

这里说明的协议遵循布莱根妇女医院人类研究伦理委员会的指导方针。 1. 术前方案 在临床上评估脊柱病理学患者并确定脊柱手术的资格。进行神经系统评估并获得CT或MRI扫描以识别脊柱病变。 包括有硬膜内病变的患者,如神经鞘瘤、室管膜瘤、脑膜瘤、星形细胞瘤 等;或有腹侧压迫性硬膜外病变的患者,例如腹侧胸椎间盘突出、腹侧骨折碎片或脊髓肿瘤…

Representative Results

在正常的脊柱超声成像中,硬脑膜是围绕电波脊髓液的回声层。脊髓的特点是其均匀的外观和低回声原性,其周围是回声致密的边缘。这种回声边缘是由于密度从脊髓液到脊髓的转移。中央神经管表现为明亮的中央回声,而退出的神经根似乎具有高度的回声性,特别是在马尾16处。术中超声可在硬膜内占位性病变切除术中起到有利作用。在标准病例中,?…

Discussion

随着新技术的出现,脊柱手术中的术中超声在很大程度上已经失宠,然而,与其他可用的成像方式(如MRI和CT 6,9161718)相比,它仍然具有一些优势。除了价格便宜之外,在该协议中,我们还表明它易于使用,并且可以提供具有足够分辨率的结构可视化,否则外科医?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者没有致谢。

Materials

Aloka Prosound 5 mobile ultrasound machine Hitachi N/A any comparable devices on the market should suffice
UST-9120 transducer probe. Hitachi UST-9120 Has a 20mm diameter with 10 to 4.4 MHz frequency range (any comparable compatible transducer should suffice).

References

  1. Reid, M. H. Ultrasonic visualization of a cervical cord cystic astrocytoma. AJR. American Journal of Roentgenology. 131 (5), 907-908 (1978).
  2. Dohrmann, G. J., Rubin, J. M. Intraoperative ultrasound imaging of the spinal cord: syringomyelia, cysts, and tumors–a preliminary report. Surgical Neurology. 18 (6), 395-399 (1982).
  3. Rubin, J. M., Dohrmann, G. J. Use of ultrasonically guided probes and catheters in neurosurgery. Surgical Neurology. 18 (2), 143-148 (1982).
  4. Braun, I. F., Raghavendra, B. N., Kricheff, I. I. Spinal cord imaging using real-time high-resolution ultrasound. Radiology. 147 (2), 459-465 (1983).
  5. Hutchins, W. W., Vogelzang, R. L., Neiman, H. L., Fuld, I. L., Kowal, L. E. Differentiation of tumor from syringohydromyelia: intraoperative neurosonography of the spinal cord. Radiology. 151 (1), 171-174 (1984).
  6. Juthani, R. G., Bilsky, M. H., Vogelbaum, M. A. Current Management and Treatment Modalities for Intramedullary Spinal Cord Tumors. Current Treatment Options in Oncology. 16 (8), 39 (2015).
  7. Knake, J. E., Gabrielsen, T. O., Chandler, W. F., Latack, J. T., Gebarski, S. S., Yang, P. J. Real-time sonography during spinal surgery. Radiology. 151 (2), 461-465 (1984).
  8. Montalvo, B. M., Quencer, R. M., Green, B. A., Eismont, F. J., Brown, M. J., Brost, P. Intraoperative sonography in spinal trauma. Radiology. 153 (1), 125-134 (1984).
  9. Montalvo, B. M., Quencer, R. M. Intraoperative sonography in spinal surgery: current state of the art. Neuroradiology. 28 (5-6), 551-590 (1986).
  10. Pasto, M. E., Rifkin, M. D., Rubenstein, J. B., Northrup, B. E., Cotler, J. M., Goldberg, B. B. Real-time ultrasonography of the spinal cord: intraoperative and postoperative imaging. Neuroradiology. 26 (3), 183-187 (1984).
  11. Mari, A. R., Shah, I., Imran, M., Ashraf, J. Role of intraoperative ultrasound in achieving complete resection of intra-axial solid brain tumours. JPMA. The Journal of the Pakistan Medical Association. 64 (12), 1343-1347 (2014).
  12. Ivanov, M., Budu, A., Sims-Williams, H., Poeata, I. Using Intraoperative Ultrasonography for Spinal Cord Tumor Surgery. World Neurosurgery. 97, 104-111 (2017).
  13. Blumenkopf, B., Daniels, T. Intraoperative ultrasonography (IOUS) in thoracolumbar fractures. Journal of Spinal Disorders. 1 (1), 86-93 (1988).
  14. McGahan, J. P., Benson, D., Chehrazi, B., Walter, J. P., Wagner, F. C. Intraoperative sonographic monitoring of reduction of thoracolumbar burst fractures. AJR. American Journal of roentgenology. 145 (6), 1229-1232 (1985).
  15. Quencer, R. M., Montalvo, B. M., Eismont, F. J., Green, B. A. Intraoperative spinal sonography in thoracic and lumbar fractures: evaluation of Harrington rod instrumentation. AJR. American Journal of roentgenology. 145 (2), 343-349 (1985).
  16. Sosna, J., Barth, M. M., Kruskal, J. B., Kane, R. A. Intraoperative sonography for neurosurgery. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine. 24 (12), 1671-1682 (2005).
  17. Raymond, C. A. Brain, spine surgeons say yes to ultrasound. JAMA. 255 (17), 2258-2262 (1986).
  18. Toktas, Z. O., Sahin, S., Koban, O., Sorar, M., Konya, D. Is intraoperative ultrasound required in cervical spinal tumors? A prospective study. Turkish Neurosurgery. 23 (5), 600-606 (2013).
  19. . . Surgical Approaches to the Spine. , (2015).
  20. Friedman, J. A., Wetjen, N. M., Atkinson, J. L. D. Utility of intraoperative ultrasound for tumors of the cauda equina. Spine. 28 (3), 288-290 (2003).
  21. Zhou, H., et al. Intraoperative ultrasound assistance in treatment of intradural spinal tumours. Clinical Neurology and Neurosurgery. 113 (7), 531-537 (2011).
  22. Harrop, J. S., Ganju, A., Groff, M., Bilsky, M. Primary intramedullary tumors of the spinal cord. Spine. 34, 69-77 (2009).
  23. Quencer, R. M., Montalvo, B. M. Normal intraoperative spinal sonography. AJR. American journal of roentgenology. 143 (6), 1301-1305 (1984).
  24. Aoyama, T., Hida, K., Akino, M., Yano, S., Iwasaki, Y. Detection of residual disc hernia material and confirmation of nerve root decompression at lumbar disc herniation surgery by intraoperative ultrasound. Ultrasound in Medicine & Biology. 35 (6), 920-927 (2009).
  25. Bose, B. Thoracic extruded disc mimicking spinal cord tumor. The Spine Journal: Official Journal of the North American Spine Society. 3 (1), 82-86 (2003).
  26. Harel, R., Knoller, N. Intraoperative spine ultrasound: application and benefits. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 25 (3), 865-869 (2016).
  27. Lazennec, J. Y., Saillant, G., Hansen, S., Ramare, S. Intraoperative ultrasonography evaluation of posterior vertebral wall displacement in thoracolumbar fractures. Neurologia Medico-Chirurgica. 39 (1), 8-15 (1999).
  28. Matsuyama, Y., et al. Cervical myelopathy due to OPLL: clinical evaluation by MRI and intraoperative spinal sonography. Journal of Spinal Disorders & Techniques. 17 (5), 401-404 (2004).
  29. Mueller, L. A., et al. Ultrasound-guided spinal fracture repositioning, ligamentotaxis, and remodeling after thoracolumbar burst fractures. Spine. 31 (20), 739-747 (2006).
  30. Nishimura, Y., Thani, N. B., Tochigi, S., Ahn, H., Ginsberg, H. J. Thoracic discectomy by posterior pedicle-sparing, transfacet approach with real-time intraoperative ultrasonography: Clinical article. Journal of Neurosurgery. Spine. 21 (4), 568-576 (2014).
  31. Randel, S., Gooding, G. A., Dillon, W. P. Sonography of intraoperative spinal arteriovenous malformations. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine. 6 (9), 539-544 (1987).
  32. Seichi, A., et al. Intraoperative ultrasonographic evaluation of posterior decompression via. laminoplasty in patients with cervical ossification of the posterior longitudinal ligament: correlation with 2-year follow-up results. Journal of Neurosurgery. Spine. 13 (1), 47-51 (2010).
  33. Tian, W., et al. Intraoperative 3-dimensional navigation and ultrasonography during posterior decompression with instrumented fusion for ossification of the posterior longitudinal ligament in the thoracic spine. Journal of Spinal Disorders & Techniques. 26 (6), 227-234 (2013).
  34. Tokuhashi, Y., Matsuzaki, H., Oda, H., Uei, H. Effectiveness of posterior decompression for patients with ossification of the posterior longitudinal ligament in the thoracic spine: usefulness of the ossification-kyphosis angle on MRI. Spine. 31 (1), 26-30 (2006).
  35. Vasudeva, V. S., Abd-El-Barr, M., Pompeu, Y. A., Karhade, A., Groff, M. W., Lu, Y. Use of Intraoperative Ultrasound During Spinal Surgery. Global Spine Journal. 7 (7), 648-656 (2017).
  36. Alaqeel, A., Abou Al-Shaar, H., Alaqeel, A., Al-Habib, A. The utility of ultrasound for surgical spinal decompression. Medical Ultrasonography. 17 (2), 211-218 (2015).
  37. Della Pepa, G. M., et al. Real-time intraoperative contrast-enhanced ultrasound (CEUS) in vascularized spinal tumors: a technical note. Acta Neurochirurgica. 160 (6), 1259-1263 (2018).
  38. Della Pepa, G. M., et al. Integration of Real-Time Intraoperative Contrast-Enhanced Ultrasound and Color Doppler Ultrasound in the Surgical Treatment of Spinal Cord Dural Arteriovenous Fistulas. World Neurosurgery. 112, 138-142 (2018).
check_url/fr/58080?article_type=t

Play Video

Citer Cet Article
Chua, M. M., Vasudeva, V. S., Lu, Y. Intraoperative Ultrasound in Spinal Surgery. J. Vis. Exp. (186), e58080, doi:10.3791/58080 (2022).

View Video