Summary

合成肺腺癌细胞原位移植研究 pd-l1 表达

Published: January 19, 2019
doi:

Summary

本文介绍了一种小鼠肺腺癌细胞微创全基因移植模型, 作为研究非小细胞肺癌的时间和成本降低模型。

Abstract

小鼠模型的应用是研究各种疾病的病理生理学不可缺少的。关于肺癌, 有几种模型, 包括基因工程模型以及移植模型。然而, 基因工程小鼠模型是耗时和昂贵的, 而一些原位移植模型是很难重现。本文介绍了一种非侵入性肺肿瘤细胞气管内给药方法, 作为一种替代的原位移植模型。使用小鼠肺腺癌细胞和合成形移植接受者可以在完全活跃的免疫系统存在下研究肿瘤的发生。此外, 移植前肿瘤细胞的基因操作使这一模型成为研究遗传因素在生理条件下对肿瘤生长和肿瘤细胞基因表达谱的影响的一个有吸引力的节省时间的方法。利用该模型, 我们表明, 肺腺癌细胞在自然环境中生长时, t 细胞抑制器编程死亡配体 1 (death-ligand) 的水平与体外培养相比有了提高。

Introduction

肺癌仍然是迄今为止男性和女性中最大的癌症相关杀手.事实上, 根据美国癌症协会的数据, 每年死于肺癌的人数超过死于乳腺癌、前列腺癌和结肠癌的人1 人。直到最近, 大多数患有非小细胞肺癌 (nsclc) 的患者, 是肺癌最丰富的亚型, 在一线环境下接受了铂基化疗, 主要是血管生成的补充抑制剂2。只有一组患者在表皮生长因子受体 (egfr)、再生淋巴瘤激酶 (alk) 或 ros1 中存在致癌突变, 可以用可用的靶向药物3,4进行治疗。随着免疫检查抑制剂的出现, 肺癌患者出现了新的希望, 尽管直到现在, 只有 20%-40% 的患者对免疫疗法做出反应5。因此, 需要进一步研究, 通过微调免疫检查点疗法和调查组合治疗方案来改善这一结果。

为了研究肺癌, 有大量的临床前模型, 包括由化学物质和致癌物质引发的自发模型和基因工程小鼠模型 (gemm), 在这些模型中, 有条件的激活后, 本土肿瘤就会出现。癌基因和肿瘤抑制基因6,7,8的失活。这些模型对研究肺肿瘤发展的基本过程特别有价值, 但也需要广泛的小鼠繁殖, 实验很耗时。因此, 许多评价潜在抑制剂的研究利用皮下 (患者衍生) 异种移植模型, 其中人肺癌细胞系皮下注射到免疫缺陷小鼠9

在这些模型中, 肿瘤的微元没有相应的表现;因此, 研究人员还使用原位移植模型, 其中肿瘤细胞被静脉注射, 胸内注射, 或直接注入肺实质10,11, 12, 13, 14,15,16,17,18,19,20。其中一些方法在技术上具有挑战性, 难以重现, 需要对研究人员进行强化培训。21在这里, 我们在免疫能力强的小鼠身上采用了一种非侵入性原位原位气管内移植方法, 在这种方法中, 肿瘤在3-5周内发展, 与人类肿瘤有显著的相似性, 以诱导 t 细胞的表达抑制细胞上的程序化死亡配体 1 (death-ligand)。11,12,20使用从 gemm 模型和同源受者小鼠中提取的小鼠肿瘤细胞, 可以对包括免疫细胞在内的肿瘤微环境进行适当的研究。此外, 基因编辑工具,如 crispr/cas9 技术22可以在移植前的体外使用, 这有助于调查遗传因素对肺肿瘤发生的影响。

Protocol

下文概述的所有实验规程均遵循道德准则, 并得到奥地利联邦科学、研究和经济部的批准。 请注意:这里的方案描述了小鼠肺腺癌细胞成合合受者的原位移植模型。如果内部有细胞, 可从 kraslsl-g12d:p 53fl/fl (kp) 小鼠7、18的肿瘤肺中分离出细胞, 并移植到背景和性别相同的小鼠体内。如果细胞是由其他研究小…

Representative Results

我们通过气管内肿瘤细胞传递的原位移植模型来测试肿瘤微环境是否刺激 pd-l1 表达。因此, 我们从自主 kp 模型 (kp 细胞) 中分离出小鼠肺交流细胞, 10周后通过 cre-re这时-重组表达腺病毒 (adre) 分娩24。随后, 我们用绿色荧光蛋白 (gfp) 标记肺交流细胞, 表达慢病毒25 , 并通过气管内传递将其移植到免疫能力强的同种小鼠体内。为了验证…

Discussion

研究肺生理和病理事件, 广泛使用侵入性和非侵入性气管插管方法注入各种试剂26272829。 ,30,31,32。在癌症领域, 研究人员使用气管内 (和鼻内) 注入 cre-re卖给表达的病毒, 在肺上皮细胞中引入体细胞突变。在 kras-lsl-g12d…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者要感谢萨菲亚扎赫马帮助准备组织部分。

Materials

mouse lung adenocarcinoma cell line isolated in house
C57Bl/6 mice F1 of the cross of the two backgrounds may be used (8-12 weeks)
129S mice
RPMI 1640 Medium Life Technologies 11544446
Fetal Calf Serum Life Technologies 11573397
Penicillin/Streptomycin Solution Life Technologies 11548876
L-Glutamine Life Technologies 11539876
Trypsin, 0.25% (1X) with EDTA Life Technologies 11560626
UltraPure 0.5M EDTA, pH 8.0 Thermo Fisher Scientific 15575020
Ketasol (100 mg/ml Ketamine) Ogris Pharma 8-00173
Xylasol (20 mg/ml Xylazine) Ogris Pharma 8-00178
BD Insyste (22GA 1.00 IN) BD 381223
Blunt forceps Roboz RS8260
Leica CLS150 LED Leica 30250004 Fibre Light Illuminator
Student Iris Scissors Fine Science Tools 91460-11
DNase I (RNase-Free) New England Biolabs M0303S
Collagenase Type I Life Technologies 17100017
ACK Lysing Buffer Lonza 10-548E
CD274 (PD-L1, B7-H1) Monoclonal Antibody (MIH5), PE-Cyanine7 eBioscience 25-5982-82
Rat IgG2a kappa Isotype Control, PE-Cyanine7 eBioscience 25-4321-82

References

  1. Siegel, R. L., Miller, K. D., Jemal, A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians. 68 (1), 7-30 (2018).
  2. Zappa, C., Mousa, S. A. Non-small cell lung cancer: current treatment and future advances. Translational Lung Cancer Research. 5 (3), 288-300 (2016).
  3. Dolly, S. O., Collins, D. C., Sundar, R., Popat, S., Yap, T. A. Advances in the Development of Molecularly Targeted Agents in Non-Small-Cell Lung. Drugs. 77 (8), 813-827 (2017).
  4. Stinchcombe, T. E. Targeted Therapies for Lung Cancer. Cancer Treatment Research. 170, 165-182 (2016).
  5. Brody, R., et al. PD-L1 expression in advanced NSCLC: Insights into risk stratification and treatment selection from a systematic literature review. Lung Cancer. 112, 200-215 (2017).
  6. Safari, R., Meuwissen, R. Practical use of advanced mouse models for lung cancer. Methods in Molecular Biology. 1267, 93-124 (2015).
  7. DuPage, M., Dooley, A. L., Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nature Protocols. 4 (7), 1064-1072 (2009).
  8. Kwon, M. C., Berns, A. Mouse models for lung cancer. Molecular Oncology. 7 (2), 165-177 (2013).
  9. Hidalgo, M., et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discovery. 4 (9), 998-1013 (2014).
  10. Chen, X., et al. An orthotopic model of lung cancer to analyze primary and metastatic NSCLC growth in integrin alpha1-null mice. Clinical & Experiment Metastasis. 22 (2), 185-193 (2005).
  11. Kang, Y., et al. Development of an orthotopic transplantation model in nude mice that simulates the clinical features of human lung cancer. Cancer Science. 97 (10), 996-1001 (2006).
  12. Kang, Y., et al. Proliferation of human lung cancer in an orthotopic transplantation mouse model. Experimental and Therapeutic. 1 (3), 471-475 (2010).
  13. Kuo, T. H., et al. Orthotopic reconstitution of human small-cell lung carcinoma after intravenous transplantation in SCID mice. Anticancer Research. 12 (5), 1407-1410 (1992).
  14. Li, B., et al. A novel bioluminescence orthotopic mouse model for advanced lung cancer. Radiation Research. 176 (4), 486-493 (2011).
  15. Mase, K., et al. Intrabronchial orthotopic propagation of human lung adenocarcinoma–characterizations of tumorigenicity, invasion and metastasis. Lung Cancer. 36 (3), 271-276 (2002).
  16. McLemore, T. L., et al. Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Recherche en cancérologie. 47 (19), 5132-5140 (1987).
  17. Tsai, L. H., et al. The MZF1/c-MYC axis mediates lung adenocarcinoma progression caused by wild-type lkb1 loss. Oncogene. 34 (13), 1641-1649 (2015).
  18. Winslow, M. M., et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature. 473 (7345), 101-104 (2011).
  19. Zou, Y., Fu, H., Ghosh, S., Farquhar, D., Klostergaard, J. Antitumor activity of hydrophilic Paclitaxel copolymer prodrug using locoregional delivery in human orthotopic non-small cell lung cancer xenograft models. Clinical Cancer Research. 10 (21), 7382-7391 (2004).
  20. Buckle, T., van Leeuwen, F. W. Validation of intratracheal instillation of lung tumour cells in mice using single photon emission computed tomography/computed tomography imaging. Lab Animal. 44 (1), 40-45 (2010).
  21. Berry-Pusey, B. N., et al. A semi-automated vascular access system for preclinical models. Physics in Medicine & Biology. 58 (16), 5351-5362 (2013).
  22. Ran, F. A., et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 8 (11), 2281-2308 (2013).
  23. Singer, B. D., et al. Flow-cytometric method for simultaneous analysis of mouse lung epithelial, endothelial, and hematopoietic lineage cells. American Journal of Physiology – Lung Cellular and Molecular Physiology. 310 (9), L796-L801 (2016).
  24. Moll, H. P., et al. Afatinib restrains K-RAS-driven lung tumorigenesis. Science Translational Medicine. 10 (446), (2018).
  25. Campeau, E., et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One. 4 (8), e6529 (2009).
  26. Gui, L., Qian, H., Rocco, K. A., Grecu, L., Niklason, L. E. Efficient intratracheal delivery of airway epithelial cells in mice and pigs. American Journal of Physiology – Lung Cellular and Molecular Physiology. 308 (2), L221-L228 (2015).
  27. Helms, M. N., Torres-Gonzalez, E., Goodson, P., Rojas, M. Direct tracheal instillation of solutes into mouse lung. Journal of Visualized Experiments. (42), e1941 (2010).
  28. Lin, Y. W., et al. Pharmacokinetics/Pharmacodynamics of Pulmonary Delivery of Colistin against Pseudomonas aeruginosa in a Mouse Lung Infection Model. Antimicrobial Agents and Chemotherapy. 61 (3), (2017).
  29. Wegesser, T. C., Last, J. A. Lung response to coarse PM: bioassay in mice. Toxicology and Applied Pharmacology. 230 (2), 159-166 (2008).
  30. Cai, Y., Kimura, S. Noninvasive intratracheal intubation to study the pathology and physiology of mouse lung. Journal of Visualized Experiments. (81), e50601 (2013).
  31. Lawrenz, M. B., Fodah, R. A., Gutierrez, M. G., Warawa, J. Intubation-mediated intratracheal (IMIT) instillation: a noninvasive, lung-specific delivery system. Journal of Visualized Experiments. (93), e52261 (2014).
  32. Vandivort, T. C., An, D., Parks, W. C. An Improved Method for Rapid Intubation of the Trachea in Mice. Journal of Visualized Experiments. (108), e53771 (2016).

Play Video

Citer Cet Article
Moll, H. P., Mohrherr, J., Breitenecker, K., Haber, M., Voronin, V., Casanova, E. Orthotopic Transplantation of Syngeneic Lung Adenocarcinoma Cells to Study PD-L1 Expression. J. Vis. Exp. (143), e58101, doi:10.3791/58101 (2019).

View Video