Summary

Anaerob Protein oprensning og kinetisk analyse via ilt elektrode til at studere DesB Dioxygenase aktivitet og hæmning

Published: October 03, 2018
doi:

Summary

Her præsenterer vi en protokol for anaerob protein oprensning, anaerob proteinkoncentration og efterfølgende kinetic karakterisering ved hjælp af en ilt elektrode system. Metoden er illustreret ved hjælp af enzymet DesB, en dioxygenase enzym, som er mere stabilt og aktiv, når renset og gemt i en anaerobt miljø.

Abstract

Ilt-følsomme proteiner, herunder de enzymer, der anvender ilt som et substrat, kan have reduceret stabilitet, når renset ved hjælp af traditionelle aerobe rensning metoder. Dette manuskript illustrerer de tekniske detaljer i anaerob rensningsproces, herunder udarbejdelse af buffere og reagenser, metoder til kolonne kromatografi i en handskerummet, og afsaltning af protein før kinetik. Også beskrevet er metoder til at forberede og ved hjælp af en ilt elektrode til at udføre kinetic karakterisering af en ilt-udnytte enzym. Disse metoder er illustreret ved hjælp af dioxygenase enzymet DesB, gallate dioxygenase fra bakterien Sphingobium sp. stamme SYK-6.

Introduction

Enzymer, der udnytter jern eller andre metaller til at aktivere ilt er ofte modtagelige for inaktivering under rensningsprocessen på grund af deres fjernelse fra den reducerende miljø af en celle. Derfor, disse proteiner skal bruges som cellelysater, underkastes ekstern reduktionsmiddel, eller renses anaerobt for at sikre, at de har optimale enzymatisk aktivitet1,2,3,4. For de enzymer, der er er ilt-følsomme (specielt jern-holdige enzymer), udføre alle oprensning og karakterisering trin samtidig opretholde anaerobe forhold nødvendige for fuldt ud at beskrive dem. Dette har ført forskerne at udvikle hele laboratoriet set-ups inden for rammerne af anaerobe kamre for undersøgelser spænder fra protein udtryk gennem krystallografi5,6,7,8 .

Heri, rapporterer vi metoder for anaerob rensning og kinetic karakterisering af enzymet DesB ved hjælp af en ilt elektrode system. DesB er en gallate dioxygenase fra bakterien Sphingobium sp. stamme SYK-6, der er relateret til LigAB, en protocatecuate dioxygenase fra den samme organisme. Begge enzymer tilhører den type II protocatechuate dioxygenase (PCAD) superfamilien, som ikke er blevet grundigt undersøgt til dato9, sandsynligvis til dels på grund af enzymer i denne superfamilien bliver modtagelige for inaktivering når renset ved hjælp af standard aerob protein oprensning metoder. Da nogle af enzymerne, der PCAD vise substrat promiskuitet, mens andre er substrat-specifikke2,10, yderligere er karakterisering af denne superfamilien nødvendige for at identificere specificitet determinanter. Som det er blevet bemærket i flere enzym udgøres11,12,13,14,15, kan små molekyler ændre aktivitet via direkte konkurrencedygtige hæmning eller binding af molekyler til at adskille allosteriske lommer, som forårsager en stigning eller et fald i enzymaktivitet16. Mens kinetik alene ikke kan differentiere bindende placeringen af en modulator, bestemme omfanget af en ændring af aktivitet er vigtigt for at forstå effekterne. Som sådan, metoder til kinetic karakterisering af indfødte DesB aktivitet og dens aktivitet i nærværelse af 4-nitrocatechol (4NC), et stof, der er almindeligt anvendt til at karakterisere og hæmme dioxygenase enzymer2,17, 18, er vist.

DesB er i stand til at nedbryde gallate, en lignin-afledte aromatiske sammensatte, via en extradiol dioxygenase (EDO) reaktion i hvilken ring åbning er katalyseret bruger ilt som en af substrater10,19. Denne enzymatiske reaktion opstår i forbindelse med fordelingen af lignin, en aromatisk heteropolymer fundet i cellens væg af planter. Lignin kan være depolymeriseret, giver en bred vifte af aromatiske forbindelser, kan yderligere opdeles i centrale metabolitter3,20,21,22,23,24 ,25,26,27,28,29,30,31,32,33 . Extradiol dioxygenases (EDO) katalyserer en ring åbne reaktion på dihydroxylated aromatiske forbindelser, hvor kavalergang forekommer grænser op til en metal-koordineret diol; derimod spaltes intradiol dioxygenases analoge aromatiske forbindelser mellem de to hydroxylgrupper (figur 1). Larss, ligesom mange andre metalloenzymer, har en divalent metal center for koordinerende henstå består af en to-histidin, one-carboxylat triad9,34,35. Disse metalloenzymer blive oxideret, gennem enten autoxidation eller mekanisme-baserede inaktivering, der henviser til, at enzymet gengives inaktive2,36,37,38.

I de eksperimentelle procedurer, der beskrives i dette manuskript, udnytter vi DesB, medlem af PCAD superfamilien fra bakterien Sphingobium sp. SYK-6, til at katalysere tilsætning af ilt på tværs af C4-C5-bond af gallate (figur 2A). Regiochemistry af denne spaltning er analog med LigAB, som er en protocatechuate-4,5-dioxygenase (figur 2B). Hidtil, omfatter undersøgelser af denne gallate dioxygenase ingen rapporter om stoffer, der hæmmer DesB10,19,39. Med brug af aerobe rensning metoder udstillet DesB variable aktivitet, mens med anvendelse af anaerob metoder kunne vi konsekvent få protein med reproducerbare aktivitet. De kinetiske undersøgelser beskrevet her viser metoder for anaerob rensning af DesB, kinetic karakterisering af reaktionen fra DesB med gallate, og hæmning af DesB af 4-nitrocatechol (4NC).

Protocol

1. generelle materialer og metoder Forberede alle nødvendige medier som beskrevet i tabel 1. Autoklave på 120 ˚C til 15 min. sterilt filtrere SOC løsning, efter tilsætning af MgCl2 og glukose, ved, at det gennem en 0,2 µm filter. PH-værdien af møllerens Lysogeny bouillon (LB media) løsning inden autoklavering. Supplere LB-Amp media løsning efter autoklavering med sterile opløsninger af 0,2 mM L-Cystein, derefter 0.1 mM jernholdige ammonium sulfat til at forbedre protein ud…

Representative Results

Vist er SDS-PAGE gel analyse af enkelte fraktioner fra rensning af DesB-maltose bindende protein (MBPS) fusion konstruktion (figur 3). Gelen afslører, at proteinet er ren (MW = 91.22 kDa), bortset fra tilstedeværelsen af DesB (MW = 49.22 kDa) og MBP protein domæne (42 kDa) kløvet fra hinanden. Brøker E2 og E3 blev udvalgt til koncentration (trin 4.2). Reproducerbare resultater fra DesB kinetic …

Discussion

De kritiske trin i at opnå aktiv, renset DesB protein involverer dannelse og opretholde den reducerede henstå aktive site i enzymet. Som sådan, rette ydeevne af induktion, rensning, koncentration og udvanding trin er afgørende for succes at opnå aktive enzym. Inducerende protein udtryk i nærværelse af 1 mM jernholdige ammonium sulfat sikrer at henstå indgår korrekt i det aktive sted på DesB. Denne metode er inspireret af undersøgelser som dem med amidohydrolase metalloenzymer, som ofte kræver tilføjelse af m…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Vi vil gerne takke Dr. Camille Keller Wesleyan University for teknisk support. Særlig tak til Professor Lindsay D. Eltis samt Jenna K. Capyk fra University of British Columbia og Christian Whitman fra University of Texas i Austin, for deres rådgivning vedrørende anaerob protein oprensning metoder og brug af en O2 -følsomme elektrode.

Materials

Isopropyl β-D-1-thiogalactopyranodise Gold Bio Technologies I2481C50
Coomassie Brilliant Blue R-250 Bio-Rad 161-0400
Ammonium persulfate Bio-Rad 161-0700
30% Acrylamide Bio-Rad 161-0158
N,N'tetramethyl-ethylenediamine Bio-Rad 161-0801
Amylose Resin High Flow New England Biolabs E8022S
BL21 (DE3) competent Escherichia coli cells New England Biolabs C2527I
L-cysteine Sigma Aldrich C7352
gallic acid Sigma Aldrich G7384
4-nitrocatechol Sigma Aldrich N15553
Ferrous ammonium sulfate Mallinckrodt 5064
Sodium dithionite Alfa Aesar 33381-22
wheaton serum bottles Fisher Scientific 06-406G
25 mm Acrodisc PF Syringe Filter with Supor Membrane Pall Corportation 4187
400 mL Amicon Stirred Cell Concentrator EMD Millipore UFSC40001
76 mm Millipore Ultracel 10 kDa cutoff reconsituted cellulose membrane filter EMD Millipore PLGC07610
DL-dithiothreitol Gold Bio Technologies DTT50
Sephadex G-25 coarse desalting gal column GE Healthcare 17-0033-01
2 mL Crimp-Top Vials Fisher Scientific 03-391-38
Oxygraph Plus Electrode Control Unit Hansatech Instruments OXYG1 Plus
Oxygen Eletrode Chamber Hansatech Instruments DW1
Electrode Disc Hansatech Instruments S1
PTFE (0.0125 mmX25mm) 30m reel Hansatech Instruments S4
Electrode cleaning Kit Hansatech Instruments S16
Spacer paper Zig Zag available at any gas station
He-series Dri-Lab glove box Vacuum/Atmospheres Company
HE-493 Dri-Train Vacuum/Atmospheres Company
Double-Ended Micro-Tapered Stainless Steel Spatula Fisher Scientific 21-401-10
DWK Life Sciences Kimble Kontes Flex Column Economy Column Fisher Scientific k420400-1530
10 μL, Model 701 N SYR, Cemented NDL 26s ga, 2 in, point stlye 2 syringe Hamilton 80300
DWK Life Sciences Kimble Kontes Flex Column Economy Column Fisher Scientific K420401-1505
Emulsiflex-C5 high-pressure homogenizer Avestin
B-PER Complete Bacterial Protein Extraction Reagent Thermo Fisher Scientific 89821
Lysozyme from chicken egg white Sigma Aldrich 12650-88-3
Sodium dodecyl sulfate Thermo Fisher Scientific 151-21-3
ampicillin Sigma Aldrich 7177-48-2
Tryptone Fisher Scientific BP-1421-500
Yeast extract Fisher Scientific BP1422-2
Sodium Chloride Fisher Scientific S271-10
Potassium Chloride Fisher Scientific P217-3
Magnesium Chloride Fisher Scientific M33-500
Dextrose Fisher Scientific D16-3
Sodium Hydroxide Fisher Scientific S318-1
Tris hydrochloride Fisher Scientific BP153-500
Maltose Fisher Scientific BP684-500
Glycine Fisher Scientific G46-500

References

  1. Awaya, J. D., Walton, C., Borthakur, D. The pydA-pydB fusion gene produces an active dioxygenase-hydrolase that degrades 3-hydroxy-4-pyridone, an intermediate of mimosine metabolism. Applied Microbiology and Biotechnology. 75 (3), 583-588 (2007).
  2. Barry, K. P., Taylor, E. A. Characterizing the Promiscuity of LigAB, a Lignin Catabolite Degrading Extradiol Dioxygenase from Sphingomonas paucimobilis SYK-6. Biochimie. 52 (38), 6724-6736 (2013).
  3. Colabroy, K. L., Smith, I. R., Vlahos, A. H. S., Markham, A. J., Jakubik, M. E. Defining a kinetic mechanism for l-DOPA 2,3 dioxygenase, a single-domain type I extradiol dioxygenase from Streptomyces lincolnensis. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics. 1844 (3), 607-614 (2014).
  4. Imsand, E. M., Njeri, C. W., Ellis, H. R. Addition of an external electron donor to in vitro assays of cysteine dioxygenase precludes the need for exogenous iron. Archives of Biochemistry and Biophysics. 521 (1), 10-17 (2012).
  5. Tsai, C. -. L., Tainer, J. A., David, S. S. . Methods in Enzymology. 599, 157-196 (2018).
  6. Kuchenreuther, J. M., et al. High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli. Public Library of Science ONE. 5 (11), e15491 (2010).
  7. Dupuy, J., et al. Crystallization and preliminary X-ray diffraction data for the aconitase form of human iron-regulatory protein 1. Acta Crystallographica Section F. 61 (5), 482-485 (2005).
  8. Fan, L., et al. XPD Helicase Structures and Activities: Insights into the Cancer and Aging Phenotypes from XPD Mutations. Cell. 133 (5), 789-800 (2008).
  9. Vaillancourt, F. H., Bolin, J. T., Eltis, L. D. The ins and outs of ring-cleaving dioxygenases. Critical Reviews in Biochemistry and Molecular Biology. 41, 241-267 (2006).
  10. Sugimoto, K., et al. Molecular Mechanism of Strict Substrate Specificity of an Extradiol Dioxygenase, DesB, Derived from Sphingobium sp. SYK-6. Public Library of Science ONE. 9 (3), e92249 (2014).
  11. Lewis-Ballester, A., et al. Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1. Nature Communications. 8, (2017).
  12. Lipscomb, J. D., Hoffman, B. M. Allosteric control of O-2 reactivity in Rieske oxygenases. Structure. 13 (5), 684-685 (2005).
  13. Mccray, J. A., Brady, F. O. Allosteric Control of Transient Kinetics of Carbon Monoxide-L-Tryptoohan-2,3-Dioxygenase Complex-Formation. Federation Proceedings. 32 (3), 469 (1973).
  14. Pearson, J. T., Siu, S., Meininger, D. P., Wienkers, L. C., Rock, D. A. In Vitro Modulation of Cytochrome P450 Reductase Supported Indoleamine 2,3-Dioxygenase Activity by Allosteric Effectors Cytochrome b(5) and Methylene Blue. Biochimie. 49 (12), 2647-2656 (2010).
  15. Walsh, H. A., Daya, S. Inhibition of hepatic tryptophan-2,3-dioxygenase: Superior potency of melatonin over serotonin. Journal of Pineal Research. 23 (1), 20-23 (1997).
  16. Barry, K. P., et al. Exploring allosteric activation of LigAB from Sphingobium sp strain SYK-6 through kinetics, mutagenesis and computational studies. Archives of Biochemistry and Biophysics. 567, 35-45 (2015).
  17. Reynolds, M. F., et al. 4-Nitrocatechol as a probe of a Mn(II)-dependent extradiol-cleaving catechol dioxygenase (MndD): comparison with relevant Fe(II) and Mn(II) model complexes. Journal of Biological Inorganic Chemistry. 8 (3), 263-272 (2003).
  18. Tyson, C. A. 4-Nitrocatechol as a colorimetric probe for non-heme iron dioxygenases. Journal of Biological Chemistry. 250 (5), 1765-1770 (1975).
  19. Kasai, D., Masai, E., Miyauchi, K., Katayama, Y., Fukuda, M. Characterization of the gallate dioxygenase gene: Three distinct ring cleavage dioxygenases are involved in syringate degradation by Sphingomonas paucimobilis SYK-6. Journal of Bacteriology. 187 (15), 5067-5074 (2005).
  20. Billings, A. F., et al. Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov. Standards in Genomic Sciences. 10 (1), 106 (2015).
  21. Brown, M. E., Chang, M. C. Y. Exploring bacterial lignin degradation. Current Opinion in Chemical Biology. 19, 1-7 (2014).
  22. Bugg, T. D. H., Ahmad, M., Hardiman, E. M., Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports. 28 (12), 1883-1896 (2011).
  23. Clarkson, S. M., et al. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds. Applied and Environmental Microbiology. 83 (18), (2017).
  24. de Gonzalo, G., Colpa, D. I., Habib, M. H. M., Fraaije, M. W. Bacterial enzymes involved in lignin degradation. Journal of Biotechnology. 236, 110-119 (2016).
  25. Falade, A. O., Eyisi, O. A. L., Mabinya, L. V., Nwodo, U. U., Okoh, A. I. Peroxidase production and ligninolytic potentials of fresh water bacteria Raoultella ornithinolytica and Ensifer adhaerens. Biotechnology Reports. 16, 12-17 (2017).
  26. Gall, D. L., Ralph, J., Donohue, T. J., Noguera, D. R. A Group of Sequence-Related Sphingomonad Enzymes Catalyzes Cleavage of β-Aryl Ether Linkages in Lignin β-Guaiacyl and β-Syringyl Ether Dimers. Environmental Science & Technology. 48 (20), 12454-12463 (2014).
  27. Li, J., Yuan, H., Yang, J. Bacteria and lignin degradation. Frontiers of Biology in China. 4 (1), 29-38 (2009).
  28. Masai, E., Katayama, Y., Nishikawa, S., Fukuda, M. Characterization of Sphingomonas paucimobilis SYK-6 genes involved in degradation of lignin-related compounds. Journal of Industrial Microbiology & Biotechnology. 23, 364-373 (1999).
  29. Morales, L. T., González-García, L. N., Orozco, M. C., Restrepo, S., Vives, M. J. The genomic study of an environmental isolate of Scedosporium apiospermum shows its metabolic potential to degrade hydrocarbons. Standards in Genomic Sciences. 12 (1), 71 (2017).
  30. Shettigar, M., et al. Isolation of the (+)-Pinoresinol-Mineralizing Pseudomonas sp. Strain SG-MS2 and Elucidation of Its Catabolic Pathway. Applied and Environmental Microbiology. 84 (4), (2018).
  31. Shi, Y., et al. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnology for Biofuels. 6 (1), 1 (2013).
  32. Varman, A. M., et al. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proceedings of the National Academy of Sciences. 113 (40), E5802-E5811 (2016).
  33. Wu, W., et al. Lignin Valorization: Two Hybrid Biochemical Routes for the Conversion of Polymeric Lignin into Value-added Chemicals. Scientific Reports. 7 (1), 8420 (2017).
  34. Koehntop, K. D., Emerson, J. P., Que, L. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes. Journal of Biological Inorganic Chemistry. 10 (2), 87-93 (2005).
  35. Lipscomb, J. D. Mechanism of extradiol aromatic ring-cleaving dioxygenases. Current Opinion in Structural Biology. 18 (6), 644-649 (2008).
  36. Machonkin, T. E., Doerner, A. E. Substrate specificity of Sphingobium chlorophenolicum 2,6-dichlorohydroquinone 1,2-dioxygenase. Biochimie. 50, 8899-8913 (2011).
  37. Suzuki, T., Kawamichi, H., Imai, K. Amino Acid Sequence, Spectral, Oxygen-Binding, and Autoxidation Properties of Indoleamine Dioxygenase-Like Myoglobin from the Gastropod Mollusc Turbo cornutus. Journal of Protein Chemistry. 17 (8), 817-826 (1998).
  38. Vaillancourt, F. H., Labbe, G., Drouin, N. M., Fortin, P. D., Eltis, L. D. The Mechanism-based Inactivation of 2,3-Dihydroxybiphenyl 1,2-Dioxygenase by Catecholic Substrates. Journal of Biological Chemistry. 277 (3), 2019-2027 (2002).
  39. Sugimoto, K., et al. Crystallization and preliminary crystallographic analysis of gallate dioxygenase DesB from Sphingobium sp. SYK-6. Acta Crystallographica Section F. 65 (11), 1171-1174 (2009).
  40. Gallagher, S. R. SDS‐Polyacrylamide Gel Electrophoresis (SDS-PAGE). Current Protocols in Essential Laboratory Techniques. 6 (1), 7.3.1-7.3.28 (2012).
  41. Xiang, D. F., et al. Function Discovery and Structural Characterization of a Methylphosphonate Esterase. Biochimie. 54 (18), 2919-2930 (2015).
  42. Vladimirova, A., et al. Substrate Distortion and the Catalytic Reaction Mechanism of 5-Carboxyvanillate Decarboxylase. Journal of the American Chemical Society. 138 (3), 826-836 (2016).
  43. Korczynska, M., et al. Functional Annotation and Structural Characterization of a Novel Lactonase Hydrolyzing d-Xylono-1,4-lactone-5-phosphate and l-Arabino-1,4-lactone-5-phosphate. Biochimie. 53 (28), 4727-4738 (2014).
  44. Netto, L. E. S., Stadtman, E. R. The Iron-Catalyzed Oxidation of Dithiothreitol Is a Biphasic Process: Hydrogen Peroxide Is Involved in the Initiation of a Free Radical Chain of Reactions. Archives of Biochemistry and Biophysics. 333 (1), 233-242 (1996).
  45. Arciero, D. M., Orville, A. M., Lipscomb, J. D. Protocatechuate 4,5-Dioxygenase from Pseudomonas testosteroni. Methods in Enzymology. 188, 89-95 (1990).
  46. Harpel, M. R., Lipscomb, J. D. Gentisate 1,2-dioxygenase from pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans. Journal of Biological Chemistry. 265 (11), 6301-6311 (1990).
  47. Ishida, T., Tanaka, H., Horiike, K. Quantitative structure-activity relationship for the cleavage of C3/C4-substituted catechols by a prototypal extradiol catechol dioxygenase with broad substrate specificity. Journal of Biochemistry. 135 (6), 721-730 (2004).
  48. Vaillancourt, F. H., Han, S., Fortin, P. D., Bolin, J. T., Eltis, L. D. Molecular Basis for the Stabilization and Inhibition of 2,3-Dihydroxybiphenyl 1,2-Dioxygenase by t-Butanol. Journal of Biological Chemistry. 273 (52), 34887-34895 (1998).
  49. Veldhuizen, E. J. A., et al. Steady-state kinetics and inhibition of anaerobically purified human homogentisate 1,2-dioxygenase. Biochemical Journal. 386, 305-314 (2005).
  50. Wolgel, S. A., et al. Purification and Characterization of Protocatechuate 2,3-Dioxygenase from Bacillus macerans: a New Extradiol Catecholic Dioxygenase. Journal of Bacteriology. 175 (14), 4414-4426 (1993).
check_url/fr/58307?article_type=t

Play Video

Citer Cet Article
Uchendu, S. N., Rafalowski, A., Cohn, E. F., Davoren, L. W., Taylor, E. A. Anaerobic Protein Purification and Kinetic Analysis via Oxygen Electrode for Studying DesB Dioxygenase Activity and Inhibition. J. Vis. Exp. (140), e58307, doi:10.3791/58307 (2018).

View Video