Summary

Isolering af ekstracellulære vesikler fra Murine Bronchoalveolar Lavage væske ved hjælp af en ultrafiltrering centrifugering teknik

Published: November 09, 2018
doi:

Summary

Her beskriver vi to ekstracellulære vesikel isolation protokoller, ultrafiltrering centrifugering og ultracentrifugering med tæthed gradient centrifugering, at isolere ekstracellulære vesikler fra murine bronchoalveolar lavage flydende prøver. De ekstracellulære vesikler afledt af murine bronchoalveolar lavage væske ved begge metoder er kvantificeret og karakteriseret.

Abstract

Ekstracellulære vesikler (EVs) er nyligt opdagede subcellulært komponenter, der spiller en vigtig rolle i mange biologiske signalering funktioner under fysiologiske og patologiske stater. Isolering af evt fortsætter med at være en stor udfordring på dette område, på grund af begrænsninger iboende til hver teknik. Den differentierede ultracentrifugering med tæthed gradient centrifugering metode er et almindeligt anvendte tilgang og anses for at være den gyldne standard procedure for EV isolation. Men denne fremgangsmåde er tidskrævende, arbejdskrævende, og generelt resulterer i lav skalerbarhed, der ikke kan være egnet til små-volumen prøver såsom bronchoalveolar lavage væske. Vi påvise, at en ultrafiltrering centrifugering isolation metode er simpel og tid – og labor-effektive endnu giver en høj inddrivelse udbytte og renhed. Vi foreslår, at denne isolation metode kunne være en alternativ tilgang, der er egnet til EV isolation, særlig for små-volumen biologiske prøver.

Introduction

Exosomes er den mindste delmængde af evt, 50-200 nm i diameter, og har flere biologiske funktioner på tværs af en bred vifte af signalering processer1,2,3,4,5. De regulerer cellulær og væv homøostase primært ved at lette intercellulær kommunikation gennem cargo molekyler såsom lipider, proteiner og nukleinsyrer6,7,8,9 . Et kritisk trin i EV forskning er isoleret proces. Differential ultracentrifugering (UC), med eller uden tæthed gradient centrifugering (DGC), betragtes som guldstandarden tilgang, men denne metode indebærer væsentlige begrænsninger, herunder ineffektive EV genfindingsprocent og lav skalerbarhed10 , 11 , 12, at begrænse sine bedste udnyttelse til større volumen prøver, såsom celle kultur supernatanten eller høj exosome produktion prøver. Fordele og ulemper ved andre metoder, såsom størrelse udelukkelse af ultrafiltrering eller kromatografi, immunoaffinity isolation af perler eller kolonner og mikrofluidik, er godt beskrevet, og moderne supplerende procedurer er blevet udviklet til overvinde og minimere tekniske begrænsninger i hver tilgang11,12,13,14,15. Andre har vist, at en ultrafiltrering centrifugering (UFC) med en nanoporous membran i filterenhed er en alternativ teknik, der giver tilsvarende renhed til en UC metode16,17,18. Denne teknik kunne betragtes som en af metoderne alternativ isolering.

Bronchoalveolar lavage væske (BALF) indeholder evt, som besidder mange biologiske funktioner i forskellige luftvejssygdomme19,20,21,22. At studere BALF-afledte evt indebærer nogle udfordringer på grund af invasiv af bronkoskopi procedure hos mennesker, såvel som et begrænset antal lavage væske opsving. I lille laboratoriedyr som mus, kun et par milliliter kan inddrives i normal lunge betingelser, endnu mindre i betændte eller fibrotisk lungerne23. Derfor kan indsamle et tilstrækkeligt antal BALF for EV isolation af en differentieret ultracentrifugering for downstream-programmer ikke være muligt. Isolere korrekte EV populationer er imidlertid en afgørende faktor for at studere EV biologiske funktioner. Den fine balance mellem effektivitet og virkning fortsat en udfordring i veletablerede EV isolation metoder.

I denne aktuelle undersøgelse viser vi, at en centrifugal ultrafiltrering tilgang, udnytter en 100 kDa molekylvægt cut-off (MWCO) nanomembrane filterenhed, er egnet til små-volumen biologiske modellen som BALF. Denne teknik er enkel, effektiv og giver høj renhed og skalerbarhed til støtte for studiet af BALF-afledte evt.

Protocol

Udnyttelsen af dyr og alle animalske procedurer blev godkendt af institutionelle Animal Care og brug udvalg (IACUC) på Cedars-Sinai Medical Center (CSMC). 1. murine Bronchoalveolar Lavage væske (BALF) indsamling og forberedelse BALF samling Aflive mus med en cocktail af ketamin (300 mg/kg) og xylazin (30 mg/kg) via ruten intraperitoneal efterfulgt af cervikal dislokation. Indsæt en 22 G angiocatheter i luftrøret. Vedhæfte en insulin sprøjte indeholdende 1 mL …

Representative Results

Vi udførte EV isolation fra mus BALF ved hjælp af UFC og UC-DGC isolation metoder på samme dag. Metoden UFC kræves ca. 2.5-3 h, UC-DGC teknik kræves 8 h behandlingstid. Dette ikke omfatte buffere og reagens forberedelsestid. Det skal bemærkes, at nogle andre opgaver kan udføres i perioderne, lang centrifugering. Ikke desto mindre varede hele proceduren næsten en hel dag for UC-DGC isolation teknik. BALF-afledte evt fra n…

Discussion

I de seneste årtier, har forskere skilles ude betydninger af elbiler i cellulære homøostase. Endnu vigtigere, spille evt store roller i mange sygdomsprocesser af modulerende nærliggende og fjern celler gennem deres bioaktive cargo molekyler1,21,22,26,27 , 28 , 29 , <sup class=…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Arbejdet er støttet af NHLBI/NIH tilskud HL103868 (til PC) og HL137076 (til PC), den amerikanske hjerte sammenslutning licensbetaling (til PC) og Samuel Oschin omfattende Cancer Institute (SOCCI) Lung Cancer Research Award (til PC). Vi vil gerne give udtryk for vores store påskønnelse Smidt Heart Institute på Cedars-Sinai Medical Center, der giver os en Nanosight maskine for EV nanopartikel tracking analyse.

Materials

Material
Amicon Ultra-15 centrifugal filters Ultracel-100K Sigma-Millipore, St. Louis, MO UFC910024
Dulbecco's Phosphate Buffered Saline (DPBS) Corning Cellgro, Manassas, VA 21-031-CV
Sucrose Sigma-Millipore, St. Louis, MO EMD8550
HEPES Research Products International, Prospect, IL 75277-39-3
EDTA Corning Cellgro, Manassas, VA 46-034-CI
Sodium Chloride Sigma-Millipore, St. Louis, MO S3014-1KG
OptiPrep Sigma-Millipore, St. Louis, MO MKCD9753 Density Gradient Medium
Ketamine VetOne, Boise, ID 13985-702-10
Xylazine Akorn Animal Health, Lake Forest, IL 59399-110-20
Syringe 1 mL BD Syringe, Franklin Lakes, NJ 309656
Angiocatheter 20G BD Syringe, Franklin Lakes, NJ 381703
Centrifuge tubes 15 mL VWR, Radnor, PA 89039-666
Centrifuge tubes 50 mL Corning Cellgro, Manassas, VA 430828
Bicinchonic acid (BCA) protein assay Pierce, Thermo Fischer Scientific, Rockford, IL 23235
Rabbit anti-mouse TSG101 Antibody AbCam, Cambridge, MA AB125011
Rat anti-mouse PE-CD63 Antibody Biolegend, San Diego, CA 143904
CD81
CD9
Anti-rabbit IgG, HRP-linked antibody Cell Signaling Technology, Danvers, MA 7074S
4x LDS
10x Reducing agent (Bolt)
10x Lysis buffer (Bolt) Cell Signaling Technology, Danvers, MA
Bolt 4-12% Bis-Tris Plus acrylamide gel Invitrogen, Thermo Fisher Scientific, Waltham, MA NW04120
iBlot 2 Nitrocellulose mini stacks Invitrogen, Thermo Fisher Scientific, Waltham, MA IB23002
Chemiluminescent HRP antibody detection reagent HyGLO Denville Scientific, Holliston, MA E2400
Ultracentrifuge tubes 17 mL Beckman Coulter, Pasadena, CA 337986
Ultracentrifuge tubes 38.5 mL Beckman Coulter, Pasadena, CA 326823
Corning SFCA Syringe Filters 0.2 µm pore Thermo Fisher Scientific, Waltham, MA 09-754-13
Equipment
Centrifuge Eppendorf, Hamburg, Germany
Ultracentrifuge Beckman Coulter, Pasadena, CA
Nanosight (NS300) Malvern, Worcestershire, UK To measure particle size distribution and particle concentration
MACSQuant Analyzer 10 flow cytometer Miltenyi Biotec, Bergisch Gladbach, Germany
iBlot Transfer Apparatus Thermo Fischer Scientific, Waltham, MA
Bio-Rad ChemiDoc MP Imaging System Bio-Rad, Hercules, CA
FlowJo v. 10 Analysis software

References

  1. Thery, C., Zitvogel, L., Amigorena, S. Exosomes: composition, biogenesis and function. Nature Reviews Immunology. 2, 569-579 (2002).
  2. Kosaka, N., et al. Secretory Mechanisms and Intercellular Transfer of MicroRNAs in Living Cells. Journal of Biological Chemistry. 285 (23), 17442-17452 (2010).
  3. Raposo, G., Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. The Journal of Cell Biology. 200 (4), 373-383 (2013).
  4. Fujita, Y., Kosaka, N., Araya, J., Kuwano, K., Ochiya, T. Extracellular vesicles in lung microenvironment and pathogenesis. Trends in Molecular Medicine. 21 (9), 533-542 (2015).
  5. Kalluri, R. The biology and function of exosomes in cancer. Journal of Clinical Investigation. 126 (4), 1208-1215 (2016).
  6. Janowska-Wieczorek, A., et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International Journal of Cancer. 113 (5), 752-760 (2005).
  7. Valadi, H., et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology. 9 (6), 654-659 (2007).
  8. Colombo, M., Raposo, G., Théry, C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology. 30 (1), 255-289 (2014).
  9. Rocco, G. D., Baldari, S., Toietta, G. Exosomes and other extracellular vesicles-mediated microRNA delivery for cancer therapy. Translational Cancer Research. 6 (Supplement 8), S1321-S1330 (2017).
  10. Peterson, M. F., Otoc, N., Sethi, J. K., Gupta, A., Antes, T. J. Integrated systems for exosome investigation. Methods. 87 (1), 31-45 (2015).
  11. Xu, R., Greening, D. W., Zhu, H. J., Takahashi, N., Simpson, R. J. Extracellular vesicle isolation and characterization: toward clinical application. Journal of Clinical Investigation. 126, 1152-1162 (2016).
  12. Gardiner, C., et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. Journal of Extracellular Vesicles. 5 (1), 32945 (2016).
  13. Inglis, H. C., et al. Techniques to improve detection and analysis of extracellular vesicles using flow cytometry. Cytometry Part A. 87 (11), 1052-1063 (2015).
  14. Li, P., Kaslan, M., Lee, S. H., Yao, J., Gao, Z. Progress in Exosome Isolation Techniques. Theranostics. 7 (3), 789-804 (2017).
  15. Willis, G. R., Kourembanas, S., Mitsialis, S. A. Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency. Frontiers in Cardiovascular Medicine. 4, 20389 (2017).
  16. Lobb, R. J., et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles. 4 (1), 27031 (2015).
  17. Benedikter, B. J., et al. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Scientific Reports. 7 (1), 15297 (2017).
  18. Vergauwen, G., et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Scientific Reports. 7 (1), 2704 (2017).
  19. Kesimer, M., et al. Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. The FASEB Journal. 23 (6), 1858-1868 (2009).
  20. Torregrosa Paredes, P., et al. Bronchoalveolar lavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy. 67 (7), 911-919 (2012).
  21. Alipoor, S. D., et al. Exosomes and Exosomal miRNA in Respiratory Diseases. Mediators of Inflammation. 2016, 5628404 (2016).
  22. Hough, K. P., Chanda, D., Duncan, S. R., Thannickal, V. J., Deshane, J. S. Exosomes in Immunoregulation of Chronic Lung Diseases. Allergy. 72 (4), 534-544 (2017).
  23. Van Hoecke, L., Job, E. R., Saelens, X., Roose, K. Bronchoalveolar Lavage of Murine Lungs to Analyze Inflammatory Cell Infiltration. Journal of Visualized Experiments. (123), e55398 (2017).
  24. Minciacchi, V. R., et al. MYC Mediates Large Oncosome-Induced Fibroblast Reprogramming in Prostate Cancer. Recherche en cancérologie. 77 (9), 2306-2317 (2017).
  25. Koliha, N., et al. Melanoma Affects the Composition of Blood Cell-Derived Extracellular Vesicles. Frontiers in Immunology. 7, 581 (2016).
  26. Thery, C., Ostrowski, M., Segura, E. Membrane vesicles as conveyors of immune responses. Nature Reviews Immunology. 9, 581-593 (2009).
  27. Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V., Biancone, L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney International. 78 (9), 838-848 (2010).
  28. Lee, Y., El Andaloussi, S., Wood, M. J. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human Molecular Genetics. 21, R125-R134 (2012).
  29. Villarroya-Beltri, C., Baixauli, F., Gutiérrez-Vázquez, C., Sánchez-Madrid, F., Mittelbrunn, M. Sorting it out: Regulation of exosome loading. Seminars in Cancer Biology. 28, 3-13 (2014).
  30. Hoshino, A. Tumour exosome integrins determine organotropic metastasis. Nature. 527, 329-335 (2015).
  31. Liu, F., et al. The Exosome Total Isolation Chip. ACS Nano. 11 (11), 10712-10723 (2017).
  32. Cheruvanky, A., et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. American Journal of Physiology-Renal Physiology. 292 (5), F1657-F1661 (2007).
  33. Zhao, Z., Yang, Y., Zeng, Y., He, M. A Microfluidic ExoSearch Chip for Multiplexed Exosome Detection Towards Blood-based Ovarian Cancer Diagnosis. Lab on a Chip. 16 (3), 489-496 (2016).
  34. Fang, S., et al. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PloS ONE. 12 (4), e0175050 (2017).
  35. Cheruvanky, A., et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. American Journal Physiology-Renal Physiology. 292 (5), F1657-F1661 (2007).
  36. Kornilov, R., et al. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum. Journal of Extracellular Vesicles. 7 (1), 1422674 (2018).
  37. Alvarez, M. L., Khosroheidari, M., Kanchi Ravi, R., DiStefano, J. K. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney International. 82 (9), 1024-1032 (2012).
  38. Bosch, S., et al. Trehalose prevents aggregation of exosomes and cryodamage. Scientific Reports. 6 (1), 329 (2016).
  39. Xiao, J., et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death & Disease. 7 (6), e2277 (2016).
  40. Agarwal, U., et al. Experimental, Systems and Computational Approaches to Understanding the MicroRNA-Mediated Reparative Potential of Cardiac Progenitor Cell-Derived Exosomes From Pediatric Patients. Circulation Research. 120 (4), 701-712 (2017).
  41. Merchant, M. L., et al. Microfiltration isolation of human urinary exosomes for characterization by MS. PROTEOMICS – Clinical Applications. 4 (1), 84-96 (2010).
  42. Gouin, K., et al. A comprehensive method for identification of suitable reference genes in extracellular vesicles. Journal of Extracellular Vesicles. 6 (1), 1347019 (2017).
  43. Betsuyaku, T., et al. Neutrophil Granule Proteins in Bronchoalveolar Lavage Fluid from Subjects with Subclinical Emphysema. American Journal of Respiratory and Critical Care Medicine. 159 (6), 1985-1991 (1999).
check_url/fr/58310?article_type=t

Play Video

Citer Cet Article
Parimon, T., Garrett III, N. E., Chen, P., Antes, T. J. Isolation of Extracellular Vesicles from Murine Bronchoalveolar Lavage Fluid Using an Ultrafiltration Centrifugation Technique. J. Vis. Exp. (141), e58310, doi:10.3791/58310 (2018).

View Video