Summary

Citometria a flusso di phospho con codici a barre fluorescenti cella per cella singola segnalazione analisi e scoperta del biomarcatore

Published: October 04, 2018
doi:

Summary

Qui, un protocollo per analisi di medio-alto rendimento degli eventi di fosforilazione della proteina a livello cellulare è presentato. Phospho flusso cytometry è un approccio potente per caratterizzare la segnalazione aberrazioni, identificare e validare biomarcatori e valutare farmacodinamica.

Abstract

Segnalazione delle cellule aberranti svolge un ruolo centrale nello sviluppo del cancro e nella progressione. Più nuove terapie mirate sono infatti diretti alle proteine e le funzioni della proteina, e aberrazioni segnalazione cellulare possono quindi servire come biomarcatori per indicare le opzioni di trattamento personalizzato. Al contrario di analisi del DNA e RNA, cambiamenti nell’attività della proteina in modo più efficiente possono valutare i meccanismi di resistenza e sensibilità ai farmaci. Citometria a flusso di phospho è una tecnica potente che misura gli eventi di fosforilazione della proteina a livello cellulare, una caratteristica importante che distingue questo metodo da altri approcci basati su anticorpi. Il metodo consente l’analisi simultanea di più proteine di segnalazione. In combinazione con codici a barre delle cellule fluorescenti, grandi insiemi di dati medio-alto rendimento possono essere acquisite da citometro standard hardware in breve tempo. Phospho flusso cytometry ha applicazioni sia negli studi di biologia di base e ricerca clinica, tra cui analisi, scoperta del biomarcatore e valutazione della farmacodinamica di segnalazione. Qui, un dettagliato protocollo sperimentale è previsto per fosfo analisi del flusso delle cellule mononucleari del sangue periferico purificata, utilizzando cellule di leucemia linfatica cronica come esempio.

Introduction

Citometria a flusso di phospho viene utilizzato per analizzare i livelli di fosforilazione della proteina a cella singola risoluzione. L’obiettivo generale del metodo è di mappare i modelli di segnalazione cellulare in determinate condizioni. Sfruttando la capacità multiparametrica di citometria a flusso, parecchie vie di segnalazione possono essere analizzate simultaneamente in diversi sottogruppi di una popolazione cellulare eterogenea come sangue periferico. Queste caratteristiche offrono vantaggi rispetto ad altre tecnologie basate su anticorpi quali immunoistochimica, analisi enzima-collegata dell’immunosorbente (ELISA), matrice di proteine e fase inversa proteina matrice (RPPA)1. Citometria a flusso di phospho combinabile con codici a barre delle cellule fluorescenti (FCB), che significa che campioni di cellule individuali sono etichettati con firme uniche di coloranti fluorescenti in modo che possono essere mescolati tra loro, macchiati e analizzati come un singolo campione2. Questo riduce il consumo di anticorpo, aumenta la robustezza dei dati attraverso la combinazione di controllo e campioni trattati e aumenta la velocità di acquisizione. La popolazione complessiva di FCB possa essere divisi in più piccoli campioni e macchiata con gli anticorpi fosfo-specifici distinti fino a 35, a seconda della quantità di materiale di partenza. Grandi esperimenti profilatura possono, quindi, essere eseguiti con citometro standard hardware. Phospho flusso cytometry è stato applicato al profilo vie nei campioni di segnalazione da parecchi cancri ematologici compresi leucemia linfocitaria cronica (CLL)3,4,5, leucemia mieloide acuta (AML) 6 e non-Hodgkin linfomi7. Citometria a flusso di phospho è dunque un approccio potente per caratterizzare la segnalazione aberrazioni, identificare e validare biomarcatori e valutare farmacodinamica.

Qui, il protocollo ottimizzato per l’analisi di campioni di pazienti di CLL da citometria a flusso di phospho viene fornito (Figura 1A). Vengono illustrati esempi di caratterizzazione segnalazione basale, stimolazione del recettore delle cellule B/anti-IgM e perturbazione di droga. Viene fornita una descrizione dettagliata di una matrice FCB. Il protocollo può essere facilmente adattato ad altri tipi di cella di sospensione.

Protocol

Campioni di sangue sono stati ricevuti a seguito di consenso informato scritto da tutti i donatori. Lo studio è stato approvato dal Comitato regionale per il medico e salute ricerca etica della Norvegia sud-est e la ricerca su sangue umano è stata condotta in conformità con la dichiarazione di Helsinki8. Nota: Passaggi 1-3 devono essere eseguiti in condizioni di sterilità in un cappuccio di coltura del tessuto. 1. isolament…

Representative Results

Le fasi principali del protocollo fosfo flusso cytometry sono illustrate nella Figura 1A. Nell’esempio presentato, cellule di CLL sono state macchiate con il reagente di codici a barre Pacific Blue a quattro diluizioni. Codici a barre tridimensionale può essere eseguita combinando tre coloranti di codici a barre, come illustrato in Figura 1B. I singoli campioni sono poi riconducibili di gating successive su ogni barcoding reagen…

Discussion

Citometria a flusso di phospho è una tecnica potente per misurare i livelli di fosforilazione della proteina in cellule singole. Poiché il metodo si basa su macchiando con gli anticorpi, citometria a flusso di phospho è limitata dalla disponibilità di anticorpo. Inoltre, al fine di ottenere risultati affidabili, tutti gli anticorpi dovrebbero essere titolati e verificati prima dell’uso. Un protocollo dettagliato per la titolazione di anticorpi fosfo-specifici è stato descritto altrove12. Dura…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato condotto nel laboratorio del Professor Kjetil Taskén ed è stato sostenuto dal norvegese Cancer Society e Stiftelsen Kristian Gerhard Jebsen. Johannes Landskron e Marianne Enger sono riconosciuti per la lettura critica del manoscritto.

Materials

RPMI 1640 GlutaMAX ThermoFisher Scientific 61870-010 Cell culture medium
Fetal bovine serum ThermoFisher Scientific 10270169 Additive to cell culture medium
Sodium pyruvate ThermoFisher Scientific 11360-039 Additive to cell culture medium
MEM non-essential amino acids ThermoFisher Scientific 11140-035 Additive to cell culture medium
Lymphoprep Alere Technologies AS 1114547 Density gradient medium
Anti-IgM Southern Biotech 2022-01 For stimulation of the B cell receptor
BD Phosflow Fix Buffer I BD 557870 Fixation buffer
BD Phosflow Perm Buffer III BD 558050 Permeabilization buffer
Alexa Fluor 488 5-TFP ThermoFisher Scientific A30005 Barcoding reagent
Pacific Blue Succinimidyl Ester ThermoFisher Scientific P10163 Barcoding reagent
Pacific Orange Succinimidyl Ester, Triethylammonium Salt ThermoFisher Scientific P30253 Barcoding reagent
Compensation beads Defined by user Correct species reactivity
Falcon tubes Defined by user
Eppendorf tubes Defined by user
96 well V-bottom plates Defined by user Compatible with the flow cytometer
Centrifuges Defined by user For Eppendorf tubes, Falcon tubes and plates
Water bath Defined by user Temperature regulated
Flow cytometer Defined by user With High Throughput Sampler (HTS)
Name Company Catalog Number Comments
Antigen
AKT (pS473) Cell Signaling Technologies 4075 Clone: D9E
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Parente-Ribes et al., 2016, Spleen tyrosine kinase inhibitors reduce…, Haematologica, 101(2):e59-62
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
ATF-2 (pT71) Santa Cruz Biotechnology sc-8398 Clone: F-1
Reference: Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Pollheimer et al., 2013, Interleukin-33 drives a proinflammatory endothelial…, Arterioscler Thromb Vasc Biol, 33(2):e47-55
BLNK (pY84) Beckton Dickinson Pharmingen 558443 Clone: J117-1278
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Parente-Ribes et al., 2016, Spleen tyrosine kinase inhibitors reduce…, Haematologica, 101(2):e59-62
Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770
Btk (pY223)/Itk (pY180) Beckton Dickinson Pharmingen 564846 Clone: N35-86
Reference: Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770
Btk (pY551) Beckton Dickinson Pharmingen 558129 Clone: 24a/BTK (Y551) 
Reference: Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
Btk (pY551)/Itk (pY511) Beckton Dickinson Pharmingen 558134 Clone: 24a/BTK (Y551) 
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Parente-Ribes et al., 2016, Spleen tyrosine kinase inhibitors reduce…, Haematologica, 101(2):e59-62
CD3ζ (pY142) Beckton Dickinson Pharmingen 558489 Clone: K25-407.69
Reference: Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Histone H3 (pS10) Cell Signaling Technologies 9716 Clone: D2C8
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
IκBα Cell Signaling Technologies 5743 Clone: L35A5
Reference: Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770
LAT (pY171) Beckton Dickinson Pharmingen 558518 Clone: I58-1169
Reference: Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Lck (pY505) Beckton Dickinson Pharmingen 558577 Clone: 4/LCK-Y505 
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
MEK1 (pS298) Beckton Dickinson Pharmingen 560043 Clone: J114-64
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
NF-κB p65 (pS529) Beckton Dickinson Pharmingen 558422 Clone: K10-895.12.50
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
Pollheimer et al., 2013, Interleukin-33 drives a proinflammatory endothelial…, Arterioscler Thromb Vasc Biol, 33(2):e47-55
NF-κB p65 (pS536) Cell Signaling Technologies 4887 Clone: 93H1
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
p38 MAPK (pT180/Y182) Cell Signaling Technologies 4552 Clone: 28B10
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Pollheimer et al., 2013, Interleukin-33 drives a proinflammatory endothelial…, Arterioscler Thromb Vasc Biol, 33(2):e47-55
p44/42 MAPK (pT202/Y204) Cell Signaling Technologies 4375 Clone: E10
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Parente-Ribes et al., 2016, Spleen tyrosine kinase inhibitors reduce…, Haematologica, 101(2):e59-62
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
Pollheimer et al., 2013, Interleukin-33 drives a proinflammatory endothelial…, Arterioscler Thromb Vasc Biol, 33(2):e47-55
p53 (pS15) Cell Signaling Technologies NN Clone: 16G8
Reference: Irish et al., 2007, Flt3 Y591 duplication and Bcl-2 overexpression…, Blood, 109(6):2589-96
p53 (pS20) Cell Signaling Technologies NN Clone: Polyclonal
Reference: Irish et al., 2007, Flt3 Y591 duplication and Bcl-2 overexpression…, Blood, 109(6):2589-96
p53 (pS37) Cell Signaling Technologies NN Clone: Polyclonal
Reference: Irish et al., 2007, Flt3 Y591 duplication and Bcl-2 overexpression…, Blood, 109(6):2589-96
p53 (pS46) Cell Signaling Technologies NN Clone: Polyclonal
Reference: Irish et al., 2007, Flt3 Y591 duplication and Bcl-2 overexpression…, Blood, 109(6):2589-96
p53 (pS392) Cell Signaling Technologies NN Clone: Polyclonal
Reference: Irish et al., 2007, Flt3 Y591 duplication and Bcl-2 overexpression…, Blood, 109(6):2589-96
PLCγ2 (pY759) Beckton Dickinson Pharmingen 558498 Clone: K86-689.37
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770
Rb (pS807/pS811) Beckton Dickinson Pharmingen 558590 Clone: J112-906
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Pollheimer et al., 2013, Interleukin-33 drives a proinflammatory endothelial…, Arterioscler Thromb Vasc Biol, 33(2):e47-55
S6-Ribos. Prot. (pS235/236) Cell Signaling Technologies 4851 Clone: D57.2.2E
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
SAPK/JNK (pT183/Y185) Cell Signaling Technologies 9257 Clone: G9
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Pollheimer et al., 2013, Interleukin-33 drives a proinflammatory endothelial…, Arterioscler Thromb Vasc Biol, 33(2):e47-55
SLP76 (pY128) Beckton Dickinson Pharmingen 558438 Clone: J141-668.36.58 
Reference: Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
STAT1 (pY701) Beckton Dickinson Pharmingen 612597 Clone: 4a 
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770
STAT3 (pY705) Beckton Dickinson Pharmingen 557815 Clone: 4/P-STAT3
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
STAT4 (pY693) Zymed/ThermoFisher Scientific 71-7900 Clone: Polyclonal
Reference: Uzel et al., 2001, Detection of intracellular phosphorylated STAT-4 by flow cytometry, Clin Immunol, 100(3): 270-6
STAT5 (pY694) Beckton Dickinson Pharmingen 612599 Clone: 47/Stat5(pY694)
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770
STAT6 (pY641) Beckton Dickinson Pharmingen 612601 Clone: 18/P-Stat6
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
SYK (pY525/Y526) Cell Signaling Technologies 12081 Clone: C87C1
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Parente-Ribes et al., 2016, Spleen tyrosine kinase inhibitors reduce…, Haematologica, 101(2):e59-62
ZAP70/SYK (pY319/Y352) Beckton Dickinson Pharmingen 557817 Clone: 17A/P-ZAP70
Reference: Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770

References

  1. Lu, Y., et al. Using reverse-phase protein arrays as pharmacodynamic assays for functional proteomics, biomarker discovery, and drug development in cancer. Seminars in Oncology. 43 (4), 476-483 (2016).
  2. Krutzik, P. O., Nolan, G. P. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nature Methods. 3 (5), 361-368 (2006).
  3. Myhrvold, I. K., et al. Single cell profiling of phospho-protein levels in chronic lymphocytic leukemia. Oncotarget. 9 (10), 9273-9284 (2018).
  4. Parente-Ribes, A., et al. Spleen tyrosine kinase inhibitors reduce CD40L-induced proliferation of chronic lymphocytic leukemia cells but not normal B cells. Haematologica. 101 (2), e59-e62 (2016).
  5. Blix, E. S., et al. Phospho-specific flow cytometry identifies aberrant signaling in indolent B-cell lymphoma. BMC Cancer. 12, 478 (2012).
  6. Irish, J. M., et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell. 118 (2), 217-228 (2004).
  7. Myklebust, J. H., et al. Distinct patterns of B-cell receptor signaling in non-Hodgkin lymphomas identified by single-cell profiling. Blood. 129 (6), 759-770 (2017).
  8. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. THE JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION. 310 (20), 2191-2194 (2013).
  9. Siveen, K. S., et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochimica et Biophysica Acta. 1845 (2), 136-154 (2014).
  10. Fabbri, G., Dalla-Favera, R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nature Reviews Cancer. 16 (3), 145-162 (2016).
  11. Arnason, J. E., Brown, J. R. Targeting B Cell Signaling in Chronic Lymphocytic Leukemia. Current Oncology Reports. 19 (9), 61 (2017).
  12. Landskron, J., Tasken, K. Phosphoprotein Detection by High-Throughput Flow Cytometry. Methods in Molecular Biology. 1355, 275-290 (2016).
  13. Krutzik, P. O., Clutter, M. R., Nolan, G. P. Coordinate analysis of murine immune cell surface markers and intracellular phosphoproteins by flow cytometry. Journal of Immunology. 175 (4), 2357-2365 (2005).
  14. Pollheimer, J., et al. Interleukin-33 drives a proinflammatory endothelial activation that selectively targets nonquiescent cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 33 (2), e47-e55 (2013).
  15. Ertsås, H. C., Nolan, G. P., LaBarge, M. A., Lorens, J. B. Microsphere cytometry to interrogate microenvironment-dependent cell signaling. Integrative biology: quantitative biosciences from nano to macro. 9 (2), 123-134 (2017).
  16. Lin, C. C., et al. Single cell phospho-specific flow cytometry can detect dynamic changes of phospho-Stat1 level in lung cancer cells. Cytometry A. 77 (11), 1008-1019 (2010).
  17. Simmons, A. J., et al. Cytometry-based single-cell analysis of intact epithelial signaling reveals MAPK activation divergent from TNF-alpha-induced apoptosis in vivo. Molecular Systems Biology. 11 (10), 835 (2015).
  18. Simmons, A. J., et al. Impaired coordination between signaling pathways is revealed in human colorectal cancer using single-cell mass cytometry of archival tissue blocks. Science Signaling. 9 (449), rs11 (2016).
  19. Friedman, A. A., Letai, A., Fisher, D. E., Flaherty, K. T. Precision medicine for cancer with next-generation functional diagnostics. Nature Reviews Cancer. 15 (12), 747-756 (2015).

Play Video

Citer Cet Article
Skånland, S. S. Phospho Flow Cytometry with Fluorescent Cell Barcoding for Single Cell Signaling Analysis and Biomarker Discovery. J. Vis. Exp. (140), e58386, doi:10.3791/58386 (2018).

View Video