Summary

细胞系定量免疫印迹作为常规组织样本中生物标志物蛋白定量免疫荧光定量的标准

Published: January 07, 2019
doi:

Summary

我们描述了使用定量免疫印迹来验证免疫荧光组织学结合图像分析作为一种手段, 定量的蛋白质感兴趣的福尔马林固定, 石蜡嵌入 (ffpe) 组织样本。我们的研究结果证明了免疫荧光组织学在确定常规活检样本中生物标志物蛋白的相对数量方面的作用。

Abstract

福尔马林固定、石蜡包埋 (ffpe) 组织样品中感兴趣的蛋白质的定量在临床和研究应用中具有重要意义。定量的最佳方法是准确的, 具有广泛的线性动态范围, 并保持样品的结构完整性, 以便识别单个细胞类型。目前的方法, 如免疫组织化学 (ihc), 质谱和免疫印迹每个不符合这些规定, 由于其分类性质或需要使样品同质化。作为另一种方法, 我们建议使用免疫荧光 (if) 和图像分析来确定 ffpe 组织中感兴趣的蛋白质的相对丰度。在此基础上, 我们证明了该方法易于优化, 产生了广泛的动态范围, 并与定量免疫印迹的黄金标准相比是线性可量化的。此外, 这种方法允许保持样品的结构完整性, 并允许区分各种细胞类型, 这在诊断应用中可能是至关重要的。总体而言, 这是一种用于 ffpe 样品中蛋白质相对定量的可靠方法, 可轻松适应临床或研究需求。

Introduction

在许多临床领域都需要量化福尔马林固定、石蜡包埋 (ffpe) 组织活检样本中的蛋白质。例如, 使用常规活检标本中生物标志物蛋白的定量来阐明预后, 并为癌症患者的治疗提供信息1。然而, 目前的方法通常是主观的, 缺乏验证。

免疫组织化学 (ihc) 通常用于病理实验室, 通常依赖于针对目标蛋白的初级抗体和与酶标签 (如辣根过氧化物酶 2) 结合的二级抗体.常规 ihc 是敏感的, 可以利用微小样本, 并保持组织样本的形态完整性, 从而允许评估其相关的组织学背景下的蛋白质表达。然而, 由于 ihc 产生的显色信号是减法的, 它的动态范围相对狭窄, 多路复用 2,3,4的潜力有限。矩阵辅助激光去光/电离质谱成像 (aldi-msi) 保留了形态完整性。然而, 这种开发的技术与适度的形态分辨率相关, 需要进行大量的校准和归一化, 从而损害了其常规临床使用的可行性 5, 6,7.在组织样本中量化蛋白质的替代技术包括免疫印迹8法 9、10、11和酶联免疫吸附法 (elisa)12, 每个其中开始于样品组织的均质裂解物。主要组织样本是异质性的, 因为它们包含多种细胞类型。因此, 需要对样品进行同质化的技术不允许对特定细胞群 (如癌细胞) 中的蛋白质进行定量。

与 ihc 一样, if 适用于小型 ffpe 样品, 并允许保留组织学完整性13。然而, 由于荧光信号的加性, if 适用于多种原生抗体和荧光标签的应用。因此, 感兴趣的蛋白质可以在使用其他抗体定义的特定细胞或细胞隔间 (例如, 细胞核细胞质) 中相对量化。荧光信号也具有更大的动态范围13,14的优势。研究了ifffpe 样品中的优越性、重现性和复用潜力。

在此, 我们描述了使用定量免疫印迹使用已建立的细胞系作为一个黄金标准, 以确定 if 的定量性质, 并结合计算机辅助图像分析, 以确定感兴趣的蛋白质的相对丰度ffpe 组织样本中的组织学切片。我们已经成功地应用了这种方法在多方法量化生物标志物蛋白在临床活检样本16,17,18.

Protocol

使用初级人体组织样本的申请获得了女王大学卫生科学和附属教学医院研究伦理委员会 (hsreb) 的批准。 1. 建立细胞线组织微阵列 (tma) 收获和清洗细胞。注: 该议定书已在各种已建立的永生细胞系 (例如hela、jurkat、rch-acv) 上进行了测试。 对于粘附细胞, 一旦细胞达到约 80%的融合, 就会收获大约 1.3 x 10 7 细胞。使用适合该细胞系的试剂分离细胞。<b…

Representative Results

该方案用于确定 if 在构建 ffpe 组织块的细胞系中确定抗凋亡蛋白 bcl-2 的相对数量的能力。在癌细胞中选择性地量化 bcl-2 可以阐明致癌机制, 并可用于病理诊断和为临床管理决策提供信息 24.更具体地说, bcl-2 在适当的 b 淋巴细胞发育中起着重要作用, 其表达通常在淋巴瘤25、26、27的背?…

Discussion

我们已经描述了一种方法, 利用定量免疫印迹 (ib) 来证明免疫荧光 (if) 的作用, 以确定在 ffpe 组织样本中的目标蛋白的相对丰度。目前的蛋白质定量方法受到其分类性质的限制, 如显色性 ihc2,3, 或需要对样品进行同质化, 防止对样本结构和细胞群的调查, 如与 ib 和质谱法8,9,10,<s…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作的部分资金来自弗雷德里克·班廷和查尔斯最佳加拿大研究生奖学金 (上午)。

Materials

697 DSMZ ACC 42 Cell line
JeKo-1 ATCC CRL-3006 Cell line
Jurkat ATCC TIB-152 Cell line
RCH-ACV DSMZ ACC 548 Cell line
Granta-519 DSMZ ACC 342 Cell line
REH DSMZ ACC 22 Cell line
Raji ATCC CCL-86 Cell line
HeLa ATCC CCL-2 Cell line
Trypsin/EDTA solution Invitrogen R001100 For detaching adhesive cells
Fetal bovine serum (FBS) Wisent Inc. 81150 To neutralize trypsin
Neutral Buffered Formalin Protocol 245-684 For fixing cell pellets
UltraPure low melting point agarose Invitrogen 15517-022 For casting cell pellets
Mouse monoclonal anti-human Bcl-2 antibody, clone 124 Dako (Agilent) cat#: M088729-2, RRID: 2064429 To detect Bcl-2 by immunoflourencence and immunoblot (lot#: 00095786
Ventana Discovery XT Roche For automation of immunofluorescence staining
EnVision+ System- HRP labelled polymer (anti-mouse) Dako (Agilent) K4000 For immunofluorescence signal amplification
EnVision+ System- HRP labelled polymer (anti-rabbit) Dako (Agilent) K4002 For immunofluorescence signal amplification
Cyanine 5 tyramide reagent Perkin Elmer NEL745001KT For immunofluorescence signal amplification
Aperio ImageScope Leica Biosystems To view scanned slides
HALO image analysis software Indica Labs For quantification of immunofluorescence
Protease inhibitors (Halt protease inhibitor cocktail, 100X) Thermo Scientific 1862209 To add to RIPA buffer
Ethylenediaminetetraacetic acid (EDTA) BioShop EDT001 For RIPA buffer
NP-40 BDH Limited 56009 For RIPA buffer
Sodium deoxycholate Sigma-Aldrich D6750 For RIPA buffer
Glycerol FisherBiotech BP229 For Laemlli buffer
Bromophenol blue BioShop BRO777 For Laemlli buffer
Dithiothreitol (DTT) Bio-Rad 161-0611 For Laemlli buffer
Bovine serum albumin (BSA) BioShop ALB001 For immunoblot washes
Protein ladder (Precision Plus Protein Dual Color Standards) Bio-Rad 161-0374 For running protein gel
Filter paper (Extra thick blot paper) Bio-Rad 1703969 For blotting transfer
Nitrocellulose membrane Bio-Rad 162-0115 For blotting transfer
Trans-blot SD semi-dry transfer cell Bio-Rad 1703940 For semi-dry transfer
Skim milk powder (Nonfat dry milk) Cell Signaling Technology 9999S For blocking buffer
Tween 20 BioShop TWN510 For wash buffer
GAPDH rabbit monoclonal antibody Epitomics 2251-1 Primary antibody of control protein (lot#: YE101901C)
Goat anti-mouse IgG (HRP conjugated) antibody abcam cat#: ab6789, RRID: AB_955439 Secondary antibody for immunoblot
Goat anti-rabbit IgG (HRP conjugated) antibody abcam cat#: ab6721, RRID: AB_955447 Secondary antibody for immunoblot (lot#: GR3192725-5)
Clarity Western ECL substrates Bio-Rad 1705060 For immunoblot signal detection
Amersham Imager 600 GE Healthcare Life Sciences 29083461 For immunoblot signal detection
ImageJ software Freeware, NIH For densitometry analysis

References

  1. Khoury, J. D., et al. Validation of Immunohistochemical Assays for Integral Biomarkers in the NCI-MATCH EAY131 Clinical Trial. Clinical Cancer Research. 24 (3), 521-531 (2018).
  2. Matos, L. L., Trufelli, D. C., de Matos, M. G. L., da Silva Pinhal, M. A. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomarker insights. 5, 9-20 (2010).
  3. Seidal, T., Balaton, A. J., Battifora, H. Interpretation and quantification of immunostains. The American journal of surgical pathology. 25 (9), 1204-1207 (2001).
  4. Rimm, D. L. What brown cannot do for you. Nature Biotechnology. 24 (8), 914-916 (2006).
  5. Bokhart, M. T., Rosen, E., Thompson, C., Sykes, C., Kashuba, A. D. M., Muddiman, D. C. Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization. Analytical and bioanalytical chemistry. 407 (8), 2073-2084 (2015).
  6. Porta, T., Lesur, A., Varesio, E., Hopfgartner, G. Quantification in MALDI-MS imaging: what can we learn from MALDI-selected reaction monitoring and what can we expect for imaging?. Analytical and Bioanalytical Chemistry. 407 (8), 2177-2187 (2015).
  7. Rzagalinski, I., Volmer, D. A. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry – A tutorial review. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics. 1865 (7), 726-739 (2017).
  8. Gassmann, M., Grenacher, B., Rohde, B., Vogel, J. Quantifying Western blots: Pitfalls of densitometry. ELECTROPHORESIS. 30 (11), 1845-1855 (2009).
  9. Tyanova, S., Temu, T., Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols. 11 (12), 2301-2319 (2016).
  10. Burgess, M. W., Keshishian, H., Mani, D. R., Gillette, M. A., Carr, S. A. Simplified and efficient quantification of low-abundance proteins at very high multiplex via targeted mass spectrometry. Molecular & cellular proteomics: MCP. 13 (4), 1137-1149 (2014).
  11. Carr, S. A., et al. Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Molecular & cellular proteomics: MCP. 13 (3), 907-917 (2014).
  12. Denburg, M. R., et al. Comparison of Two ELISA Methods and Mass Spectrometry for Measurement of Vitamin D-Binding Protein: Implications for the Assessment of Bioavailable Vitamin D Concentrations Across Genotypes. Journal of Bone and Mineral Research. 31 (6), 1128-1136 (2016).
  13. Stack, E. C., Wang, C., Roman, K. A., Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: A review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods. 70 (1), 46-58 (2014).
  14. Peck, A. R., et al. Validation of tumor protein marker quantification by two independent automated immunofluorescence image analysis platforms. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc. 29 (10), 1143-1154 (2016).
  15. Toki, M. I., Cecchi, F., Hembrough, T., Syrigos, K. N., Rimm, D. L. Proof of the quantitative potential of immunofluorescence by mass spectrometry. Laboratory Investigation. 97 (3), 329-334 (2017).
  16. AlJohani, N., et al. Abundant expression of BMI1 in follicular lymphoma is associated with reduced overall survival. Leukemia and Lymphoma. 59 (9), 2211-2219 (2018).
  17. Wood, B., et al. Abundant expression of interleukin-21 receptor in follicular lymphoma cells is associated with more aggressive disease. Leukemia and Lymphoma. 54 (6), 1212-1220 (2013).
  18. Weberpals, J. I., et al. First application of the Automated QUantitative Analysis (AQUA) technique to quantify PTEN protein expression in ovarian cancer: A correlative study of NCIC CTG OV.16. Gynecologic Oncology. 140 (3), 486-493 (2016).
  19. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Paraffin embedding tissue samples for sectioning. CSH protocols. , (2008).
  20. Fedor, H. L., Marzo, A. M. De Practical Methods for Tissue Microarray Construction. Methods in Molecular Medicine. , 89-101 (2005).
  21. Kajimura, J., Ito, R., Manley, N. R., Hale, L. P. Optimization of Single- and Dual-Color Immunofluorescence Protocols for Formalin-Fixed, Paraffin-Embedded Archival Tissues. Journal of Histochemistry & Cytochemistry. 64 (2), 112-124 (2016).
  22. Mahmood, T., Yang, P. C. Western blot: technique, theory, and trouble shooting. North American journal of medical sciences. 4 (9), 429-434 (2012).
  23. Wiedemann, M., Lee, S. J., da Silva, R. C., Visweswaraiah, J., Soppert, J., Sattlegger, E. Simultaneous semi-dry electrophoretic transfer of a wide range of differently sized proteins for immunoblotting. Nature Protocol Exchange. , (2013).
  24. Delbridge, A. R. D., Grabow, S., Strasser, A., Vaux, D. L. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nature Reviews Cancer. 16 (2), 99-109 (2016).
  25. Bosch, M., et al. A bioclinical prognostic model using MYC and BCL2 predicts outcome in relapsed/refractory diffuse large B-cell lymphoma. Haematologica. 103 (2), 288-296 (2018).
  26. Li, Y., et al. BCL2 mRNA or protein abundance is superior to gene rearrangement status in predicting clinical outcomes in patients with diffuse large B-cell lymphoma. Hematological Oncology. 35, 288-289 (2017).
  27. Choi, Y. W., et al. High expression of Bcl-2 predicts poor outcome in diffuse large B-cell lymphoma patients with low international prognostic index receiving R-CHOP chemotherapy. International Journal of Hematology. 103 (2), 210-218 (2016).
  28. . The Human Protein Atlas BCL2 Available from: https://www.proteinatlas.org/ENSG00000171791-BCL2/cell#rna (2018)
  29. Parra, E. R., et al. Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues. Scientific Reports. 7 (1), 13380 (2017).
  30. Eaton, S. L., et al. A Guide to Modern Quantitative Fluorescent Western Blotting with Troubleshooting Strategies. Journal of Visualized Experiments. (93), e52099 (2014).
  31. Zellner, M., Babeluk, R., Diestinger, M., Pirchegger, P., Skeledzic, S., Oehler, R. Fluorescence-based Western blotting for quantitation of protein biomarkers in clinical samples. ELECTROPHORESIS. 29 (17), 3621-3627 (2008).
  32. Parra, E. R. Novel Platforms of Multiplexed Immunofluorescence for Study of Paraffin Tumor Tissues. Journal of Cancer Treatment & Diagnostics. 2 (1), 43-53 (2018).
  33. Robertson, D., Savage, K., Reis-Filho, J. S., Isacke, C. M. Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue. BMC Cell Biology. 9 (1), 13 (2008).
check_url/fr/58735?article_type=t

Play Video

Citer Cet Article
Moore, A. M., Boudreau, L. R., Virk, S., LeBrun, D. P. Quantitative Immunoblotting of Cell Lines as a Standard to Validate Immunofluorescence for Quantifying Biomarker Proteins in Routine Tissue Samples. J. Vis. Exp. (143), e58735, doi:10.3791/58735 (2019).

View Video