Summary

利用功能近红外光谱进行超扫描实验

Published: January 19, 2019
doi:

Summary

本协议描述了如何进行 fnirs 超扫描实验和分析人脑同步。此外, 我们还讨论了挑战和可能的解决方案。

Abstract

两个或两个以上相互作用的人的同时大脑记录, 一种叫做超扫描的方法, 对于我们理解社会交往的神经生物学基础, 以及可能的人际关系越来越重要.功能近红外光谱 (fnirs) 非常适合进行超扫描实验, 因为它测量局部血流动力学效应和高采样率, 重要的是, 它可以应用于自然环境, 不需要严格的运动限制。在本文中, 我们提出了一个协议, 用于进行 fnirs 超扫描实验与亲子染料和分析大脑到大脑的同步。此外, 我们还讨论了实验设计、fnirs 通道的空间配准、生理影响和数据分析方法等关键问题和未来发展方向。所描述的协议不是专门针对亲子 dyads 的, 但可以应用于各种不同的二元星座, 如成人陌生人、浪漫伴侣或兄弟姐妹。总之, fnirs 超扫描有可能对正在进行的社会交往的动态产生新的见解, 这可能超出了通过检查个体大脑的活动可以研究的范围。

Introduction

近年来, 神经科学家开始通过同时记录两个或两个以上人的大脑活动来研究社会交往, 这种方法被称为超扫描1。这项技术为阐明这些相互作用背后的神经生物学机制提供了新的机会。要充分理解社会交往, 可能不足以孤立地研究单个大脑, 而还不足以研究相互作用的人2的大脑的联合活动。使用不同的神经成像技术, 超扫描研究表明, 大脑活动的互动的人或群体同步,例如, 当他们协调他们的行动3, 使音乐4, 沟通5,从事课堂活动合作.

本文提出了一种利用功能近红外光谱 (fnirs) 进行同步记录的协议。类似于功能磁共振成像 (fmri), fnirs 测量大脑激活的血流动力学反应。含氧和脱氧血红蛋白 (oxy-hb 和脱氧-hb) 的变化是根据通过组织扩散的近红外光量计算的.fnirs 非常适合进行超扫描实验, 特别是对儿童进行的实验, 因为它可以应用于比 fNIRS 更有限、更自然的环境中。此外, 它不太容易发生运动伪影, 比 fmri 和 eeg9。此外, fnirs 数据可以在高采样频率 (例如10 hz) 下获得, 因此它高度高估了相对缓慢的血流动力学反应, 从而有可能提供更完整的脑血流动力学时间图10.

该协议是在 reindl 等人的研究范围内制定的.11和最近略有修改 (特别是在通道放置和坏通道识别方面)。这项研究的目的是研究亲子关系的同步大脑活动。我们使用 fnirs 超扫描法, 评估了儿童 (5至9岁) 及其父母 (主要是母亲) 在合作和竞争的计算机任务中的前额脑区域的大脑与大脑同步。前额叶大脑区域是有针对性的, 因为在以前的超扫描研究 1中, 它们被确定为社会互动过程的重要区域。合作和竞争任务最初是由崔永元等人制定的.12和最近受雇于以前的几项研究 13,14,15。为 reindl等人的研究。1 1日, 对任务进行了修改, 使其适合儿童。参与者被要求通过按钮按下对目标 (合作) 的联合反应, 或者比其他参与者 (比赛) 反应更快。每个孩子都与父母一起完成每项任务一次, 与父母同性别的成年陌生人一起完成一次。在每个儿童成人的 dyad 中, 计算出相应通道的氧化-hb 信号的小波相干性, 作为大脑与大脑同步的度量。

该协议描述了在合作和竞争游戏中收集父母和孩子的 fnirs 超扫描数据的程序。然而, 整个程序并不具体于这项研究设计, 但适用于不同的人群 (例如, 成人陌生人、浪漫伴侣、兄弟姐妹), 可以适应许多不同的实验任务。该协议还概述了一个可能的分析程序, 其中包括必要的和可选的数据分析步骤, 包括 fnirs 数据预处理、不良信道检测、小波相干分析和随机对分析验证。

Protocol

在参加之前, 所有父母/子女都提供知情同意/同意。这项研究得到了亚琛 rwth 大学医学院伦理委员会的批准。 1. 参与者到达前的准备工作 准备新的国税局帽。 选择与参与者的头部周长大小相同或稍大的瓶盖尺寸。 将直径约为15毫米的15个孔切割成2个原始脑电图帽的额头区域, 每个孔的直径约为15毫米, 排列在水平3×5 网格中 (见材料表)。确保孔…

Representative Results

图 1显示了在合作条件下一个父子 dyad 的代表性数据。合作任务由三个30的休息块和两个任务块组成, 每个任务块有20个试验, 以交替的顺序呈现。在每次试验中, 参与者必须尽可能同时对信号做出反应, 以获得1 1分。 图 …

Discussion

在这个协议中, 我们展示了如何进行 fnirs 超扫描实验和一种可能的方法来分析大脑对大脑的同步, 测量浓度变化的氧化 hb 和脱氧-hb 在两个受试者的额脑区域同时。fnirs 超扫描相对容易应用: 一个单一的 nirs 装置足以通过在两个主体之间分裂的光原来测量两个主体的大脑活动。因此, 不同设备之间不需要同步 1。此外, 由于 fnirs 不需要严格的运动限制, 因此非常适合在自然环境和儿?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作由德国联邦州和政府的卓越倡议 (ers 种子基金、opsfs449) 资助。hitachi nirs 系统得到了德国研究基金会 dfg (inst 94818-1 fugg) 的资助。

Materials

NIRS measurement system with probe sets and probe holder grids Hitachi Medical Corporation, Tokyo, Japan ETG-4000 Optical Topography System  The current study protocol requires an optional second adult probe set for 52 channels of measurement in total as well as two 3×5 probe holder grids. 
raw EEG caps EASYCAP GmbH, Herrsching, Germany C-SCMS-56; C-SCMS-58 Caps must be provided with holes for NIRS probes by the experimenter. Choose cap size the same size or slightly larger than participant's head circumference.
Technical computing software The MathWorks, Inc., Natick, MA MATLAB R2014a (or later versions) Serves as base for Psychophysics Toolbox extensions (stimulus presentation), SPM for fNIRS toolbox  (fNIRS data analysis), and ASToolbox (WTC computation).

References

  1. Babiloni, F., Astolfi, L. Social neuroscience and hyperscanning techniques: past, present and future. Neuroscience & Biobehavioral Reviews. 44, 76-93 (2014).
  2. Hari, R., Henriksson, L., Malinen, S., Parkkonen, L. Centrality of social interaction in human brain function. Neuron. 88 (1), 181-193 (2015).
  3. Funane, T., et al. Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy. Journal of Biomedical Optics. 16 (7), 077011 (2011).
  4. Lindenberger, U., Li, S. -. C., Gruber, W., Müller, V. Brains swinging in concert: cortical phase synchronization while playing guitar. BMC Neuroscience. 10, 22 (2009).
  5. Jiang, J., et al. Neural synchronization during face-to-face communication. Journal of Neuroscience. 32 (45), 16064-16069 (2012).
  6. Dikker, S., et al. Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology. 27 (9), 1375-1380 (2017).
  7. Liu, N., et al. NIRS-based hyperscanning reveals inter-brain neural synchronization during cooperative Jenga game with face-to-face communication. Frontiers in Human Neuroscience. 10, 82 (2016).
  8. Hoshi, Y. Functional near-infrared spectroscopy: current status and future prospects. Journal of Biomedical Optics. 12 (6), 062106 (2007).
  9. Lloyd-Fox, S., Blasi, A., Elwell, C. Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neuroscience & Biobehavioral Reviews. 34 (3), 269-284 (2010).
  10. Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A., Boas, D. A. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. NeuroImage. 29 (2), 368-382 (2006).
  11. Reindl, V., Gerloff, C., Scharke, W., Konrad, K. Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage. 178, 493-502 (2018).
  12. Cui, X., Bryant, D. M., Reiss, A. L. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage. 59 (3), 2430-2437 (2012).
  13. Baker, J. M., et al. Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning. Scientific Reports. 6, 26492 (2016).
  14. Cheng, X., Li, X., Hu, Y. Synchronous brain activity during cooperative exchange depends on gender of partner: a fNIRS-based hyperscanning study. Human Brain Mapping. 36 (6), 2039-2048 (2015).
  15. Pan, Y., Cheng, X., Zhang, Z., Li, X., Hu, Y. Cooperation in lovers: an fNIRS-based hyperscanning study. Human Brain Mapping. 38 (2), 831-841 (2017).
  16. Kleiner, M., Brainard, D., Pelli, D. What’s new in Psychtoolbox-3?. Perception. 36, (2007).
  17. Huppert, T. J., Diamond, S. G., Franceschini, M. A., Boas, D. A. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics. 48 (10), D280-D298 (2009).
  18. Santosa, H., Zhai, X., Fishburn, F., Huppert, T. The NIRS Brain AnalyzIR Toolbox. Algorithms. 11 (5), 73 (2018).
  19. Tak, S., Uga, M., Flandin, G., Dan, I., Penny, W. D. Sensor space group analysis for fNIRS data. Journal of Neuroscience Methods. 264, 103-112 (2016).
  20. Scholkmann, F., Spichtig, S., Muehlemann, T., Wolf, M. How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiological Measurement. 31 (5), 649-662 (2010).
  21. van der Kant, A., Biro, S., Levelt, C., Huijbregts, S. Negative affect is related to reduced differential neural responses to social and non-social stimuli in 5-to-8-month-old infants: a functional near-infrared spectroscopy-study. Developmental Cognitive Neuroscience. 30, 23-30 (2018).
  22. Bastos, A. M., Schoffelen, J. -. M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Frontiers in Systems Neuroscience. 9, 175 (2016).
  23. Grinsted, A., Moore, J. C., Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics. 11, 561-566 (2004).
  24. Aguiar-Conraria, L., Soares, M. J. The continuous wavelet transform: moving beyond uni-and bivariate analysis. Journal of Economic Surveys. 28 (2), 344-375 (2014).
  25. Nozawa, T., Sasaki, Y., Sakaki, K., Yokoyama, R., Kawashima, R. Interpersonal frontopolar neural synchronization in group communication: an exploration toward fNIRS hyperscanning of natural interactions. NeuroImage. 133, 484-497 (2016).
  26. Burgess, A. P. On the interpretation of synchronization in EEG hyperscanning studies: a cautionary note. Frontiers in Human Neuroscience. 7, 881 (2013).
  27. Tsuzuki, D., Dan, I. Spatial registration for functional near-infrared spectroscopy: from channel position on the scalp to cortical location in individual and group analyses. NeuroImage. 85, 92-103 (2014).
  28. Tachtsidis, I., Scholkmann, F. False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward. Neurophotonics. 3 (3), 031405 (2016).
  29. Palumbo, R. V., et al. Interpersonal autonomic physiology: a systematic review of the literature. Personality and Social Psychology Review. 21 (2), 99-141 (2016).
  30. Pinti, P., et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences. , (2018).
  31. Brigadoi, S., et al. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. NeuroImage. 85 (1), 181-191 (2014).
  32. Cooper, R. J., et al. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Frontiers in Neuroscience. 6, 147 (2012).
  33. Hirsch, J., Zhang, X., Noah, J. A., Ono, Y. Frontal temporal and parietal systems synchronize within and across brains during live eye-to-eye contact. NeuroImage. 157, 314-330 (2017).
  34. Scholkmann, F., Holper, L., Wolf, U., Wolf, M. A new methodical approach in neuroscience: assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI) hyperscanning. Frontiers in Human Neuroscience. 7, 813 (2013).

Play Video

Citer Cet Article
Reindl, V., Konrad, K., Gerloff, C., Kruppa, J. A., Bell, L., Scharke, W. Conducting Hyperscanning Experiments with Functional Near-Infrared Spectroscopy. J. Vis. Exp. (143), e58807, doi:10.3791/58807 (2019).

View Video