Summary

一种用于体外超声的自定义机器人机械手的设计与实现

Published: January 07, 2019
doi:

Summary

本文介绍了一种用于体外超声检查的定制机器人机械手的设计与实现。该系统具有五自由度, 采用3d 打印制造的轻质接头和用于安全管理的机械离合器。

Abstract

由于具有高精度、灵活性和可重复性的潜力, 可以采用自跟踪机器人系统来辅助实时超声的采集。然而, 为体外超声设计的机器人数量有限, 已成功转化为临床应用。在这项研究中, 我们的目标是建立一个定制的机器人机械手, 用于体外超声检查, 它是轻量级的, 占地面积小。该机器人由五个特殊形状的链接和定制的探头操作关节机制组成, 以冗余的自由度覆盖必要的运动范围, 以确保患者的安全。强调机械安全与离合器机制, 以限制适用于患者的力量。通过设计, 机械手的总重量小于2公斤, 机械手的长度约为 2 5 厘米。该设计已经实现, 并进行了模拟, 幻影和志愿者的研究, 以验证运动范围, 使微调的能力, 机械可靠性, 和离合器的安全运行。本文详细介绍了定制机器人超声机械手的设计与实现, 并说明了设计和组装方法。介绍了该系统的设计特点和临床应用经验。结果表明, 目前提出的机器人机械手符合体外超声检查定制系统的要求, 具有很大的临床应用潜力。

Introduction

体外机器人超声 (us) 系统是指利用机器人系统持有和操作美国探测器进行外部检查的配置, 包括用于心脏、血管、产科和一般腹部成像1.使用这种机器人系统的动机是手动持有和操纵美国探测器的挑战, 例如, 寻找临床成像方案所要求的美国标准观点的挑战, 以及重复劳损2的风险, 3,4, 以及美国筛选计划的需要, 例如, 要求有经验的超声师是现场5,6。自20世纪90年代以来, 随着早期工作 178的回顾, 推出了几个美国机器人系统, 重点关注不同的功能和目标解剖, 以改善美国的不同方面考试 (例如, 远程远程操作9,10,11,12, 以及机器人操作员的互动和自动控制)13, 14. 除了用于诊断目的的美国机器人系统外, priester 等人总结的用于治疗的机器人高强度聚焦超声系统也得到了广泛的调查.1、与近期一些作品1 5日1 6日报告最新进展情况。

尽管美国的几个机器人系统已经开发出相对可靠的控制和临床操作技术, 但只有少数系统被成功地转化为临床用途, 例如商业上可用的远程超声系统17. 一个可能的原因是, 从患者和超声人的角度来看, 在临床环境中工作的大型工业机器人的接受程度很低。此外, 在安全管理方面, 大多数现有的美国机器人依靠力传感器来监测和控制对美国探测器施加的压力, 而更基本的被动限制力的机械安全机制通常是不存在的.这也可能引起人们的关切, 因为机器人操作的安全性将完全取决于电气系统和软件逻辑。

随着3d 打印技术的最新发展, 具有定制接头机构的特殊形状塑料连接可以为开发定制的医疗机器人提供新的机会。精心设计的轻质部件, 外观紧凑, 可提高临床接受度。专门为美国的检查, 一个定制的医疗机器人旨在转化为临床使用应该是紧凑的, 有足够的自由度 (dof) 和运动范围, 以涵盖扫描感兴趣的区域;例如, 腹部表面, 包括腹部的顶部和两侧。此外, 在试图优化美国观点时, 机器人还应该纳入在当地对美国探测器进行微调的能力。这通常包括探头在一定范围内的倾斜运动, 正如 essomba等人所建议的那样。18和 bassit19。为进一步解决安全问题, 预计该系统应具有独立于电气系统和软件逻辑的被动机械安全功能。

本文介绍了一种5自由度灵巧机械手的详细设计和装配方法, 该机械手是一种体外机器人美国系统的关键部件。该机械手由几个轻量级的3d 打印链接, 定制的关节机构, 和一个内置的安全离合器。dof 的具体安排为探头调整提供了充分的灵活性, 允许在小范围内轻松、安全地操作, 而不会与患者发生碰撞。拟议的多自由度机械手的目的是作为与患者接触的主要组件, 它可以简单地连接到任何常规的3自由度全球定位机制, 形成一个完整的美国机器人与完全活跃的 dof 执行美国扫描。

Protocol

1. 每个链路、端向执行器和附加组件的准备 使用3d 打印, 使用丙烯腈丁苯 (abs) 塑料、聚乳酸(pla) 塑料或尼龙,打印所有链接 (l 0、l 1、l 2、l 3 和 l 4) 和末端执行器, 如图 1所示服务。使用。打印时补充材料中提供的 stl 文件。注: 可以根据提供的文件更改每个部件的形状和比例。端部效应器的内部轮廓可以改变, ?…

Representative Results

按照该协议, 生成的系统是一个机器人机械手, 具有五个特殊形状的连接 (l0至 l4) 和五个旋转接头 (j1 至 j5), 用于移动、保持和局部倾斜美国探头 (图 8). 顶部旋转接头 (j1), 齿轮机构由四个电机驱动, 可以360°旋转以下结构, 使美国探头指向扫描区域的不同侧面, 如顶部、底部和腹部两侧。主倾斜接头 (j2),…

Discussion

与许多其他工业机器人已被转化为医疗应用不同, 协议中描述的拟议机器人机械手是根据运动范围的临床要求专门为美国考试而设计的,力的应用和安全管理。轻量级机器人机械手本身有一个广泛的运动范围足以满足大多数物质外的美国扫描, 而不需要全球定位机制的大运动。作为最接近患者的机械结构, 建议的环节也是特别形状的, 要远离患者。大多数 dof 嵌入到一个紧凑的机械手, 机器人美国扫描…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 wellcome 信托 ieh 奖 [102431] 和 wellcomeme/epsrc 医疗工程中心 [wt2018八/z/z\ z/z\ z/z] 的支持。作者感谢卫生部通过国家卫生研究所 (nihr) 向盖伊的 & 圣托马斯国家医疗服务体系基金会信托基金颁发的综合生物医学研究中心奖, 并与 king伦敦学院和国王学院医院 nhs 基金会信托基金。

Materials

3D-printed link L0 3D printing service 1 As shown in Figure 1, with the STL file provided
3D-printed link L1 3D printing service 1 As shown in Figure 1, with the STL file provided
3D-printed link L2 3D printing service 1 As shown in Figure 1, with the STL file provided
3D-printed link L3 3D printing service 1 As shown in Figure 1, with the STL file provided
3D-printed link L4 3D printing service 1 As shown in Figure 1, with the STL file provided
3D-printed end-effector 3D printing service 1 As shown in Figure 1, with the STL file provided
20-teeth spur gear 3D printing service 12 0.5 module, 5 mm face width, with mounting keyway, as shown in Figure 2, with the STL file provided
18-teeth bevel gear 3D printing service 2 0.5 module, 5 mm face width, with mounting keyway, as shown in Figure 2, with the STL file provided
120-teeth spur gear (Type A) 3D printing service 1 0.5 module, 6 mm face width, with mounting keyway, bearing housing, and bore, as shown in Figure 2, with the STL file provided
120-teeth spur gear (Type B) 3D printing service 2 0.5 module, 6 mm face width, with detent holes, bearing housing, and bore, as shown in Figure 2, with the STL file provided
120-teeth spur gear (Type C) 3D printing service 1 0.5 module, 6 mm face width, with mounting key, bearing housing, and bore, as shown in Figure 2, with the STL file provided
20-teeth long spur gear 3D printing service 1 0.5 module, 21.5 mm face width, with mounting keyways, as shown in Figure 2, with the STL file provided
144-teeth bevel gear 3D printing service 1 0.5 module, 7 mm face width, with mounting keyways, as shown in Figure 2, with the STL file provided
Bearing (37 mm O.D and 30 mm I.D) Bearing Station Ltd., UK 5 Bearing size and supplier can be varied
Bearing (12 mm O.D and 6 mm I.D) Bearing Station Ltd., UK 2 Bearing size and supplier can be varied
Bearing (32 mm O.D and 25 mm I.D) Bearing Station Ltd., UK 1 Bearing size and supplier can be varied
Bearing (8 mm O.D and 5 mm I.D) Bearing Station Ltd., UK 2 Bearing size and supplier can be varied
Plastic/metal shaft (6 mm O.D, 70 mm long) TR Fastenings Ltd., UK 1 e.g. Could be an M6 bolt and a nut
Plastic/metal shaft (5 mm O.D, 70 mm long) TR Fastenings Ltd., UK 1 e.g. Could be an M5 bolt and a nut
Ball-spring pairs WDS Ltd., UK 4 Numbers of ball-spring pairs could varied to adjust the triggering force of the clutch
Clutch covers 3D printing service 2 104 mm O.D, 5mm face width, 6 mm bore, as shown in Figure 2, with the STL file provided
3D-printed shaft collar 3D printing service 1 35 mm O.D and 30 mm I.D, 8mm face width, as shown in Figure 2, with the STL file provided
3D-printed end-effector collar 3D printing service 1 As shown in Figure 2, with the STL file provided
Small geared stepper motors AOLONG TECHNOLOGY Ltd., China 14 Part number: GM15BYS; Internal gear ratio 232:1 or 150:1, all acceptable

References

  1. Priester, A. M., Natarajan, S., Culjat, M. O. Robotic ultrasound systems in medicine. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 60 (3), 507-523 (2013).
  2. Magnavita, N., Bevilacqua, L., Mirk, P., Fileni, A., Castellino, N. Work-related musculoskeletal complaints in sonologists. Journal of Occupational and Environmental Medicine. 41 (11), 981-988 (1999).
  3. Jakes, C. Sonographers and Occupational Overuse Syndrome: Cause, Effect, and Solutions. Journal of Diagnostic Medical Sonography. 17 (6), 312-320 (2001).
  4. Society of Diagnostic Medical Sonography. Industry Standards for the Prevention of Work-Related Musculoskeletal Disorders in Sonography: Consensus Conference on Work-Related Musculoskeletal Disorders in Sonography. Journal of Diagnostic Medical Sonography. 27 (1), 14-18 (2011).
  5. LaGrone, L. N., Sadasivam, V., Kushner, A. L., Groen, R. S. A review of training opportunities for ultrasonography in low and middle income countries. Tropical Medicine & International Health. 17 (7), 808-819 (2012).
  6. Shah, S., et al. Perceived barriers in the use of ultrasound in developing countries. Critical Ultrasound Journal. 7 (1), 28 (2015).
  7. Swerdlow, D. R., Cleary, K., Wilson, E., Azizi-Koutenaei, B., Monfaredi, R. Robotic Arm–Assisted Sonography: Review of Technical Developments and Potential Clinical Applications. American Journal of Roentgenology. 208 (4), 733-738 (2017).
  8. Nouaille, L., Laribi, M., Nelson, C., Zeghloul, S., Poisson, G. Review of Kinematics for Minimally Invasive Surgery and Tele-Echography Robots. Journal of Medical Devices. 11 (4), 040802 (2017).
  9. Georgescu, M., Sacccomandi, A., Baudron, B., Arbeille, P. L. Remote sonography in routine clinical practice between two isolated medical centers and the university hospital using a robotic arm: a 1-year study. Telemedicine and e-Health. 22 (4), 276-281 (2016).
  10. Arbeille, P., et al. Use of a robotic arm to perform remote abdominal telesonography. American Journal of Roentgenology. 188 (4), W317-W322 (2007).
  11. Arbeille, P., et al. Fetal tele‐echography using a robotic arm and a satellite link. Ultrasound in Obstetrics & Gynecology. 26 (3), 221-226 (2005).
  12. Vieyres, P., Istepanian, R. H., Laxminarayan, S., Pattichis, C. S., et al. A tele-operated robotic system for mobile tele-echography: The OTELO project. M-Health: Emerging Mobile Health Systems. , 461-473 (2006).
  13. Abolmaesumi, P., Salcudean, S. E., Zhu, W. H., Sirouspour, M. R., DiMaio, S. P. Image-guided control of a robot for medical ultrasound. IEEE Transactions on Robotics and Automation. 18 (1), 11-23 (2002).
  14. Abolmaesumi, P., Salcudean, S., Zhu, W. Visual servoing for robot-assisted diagnostic ultrasound. Engineering in Medicine and Biology Society, Proceedings of the 22nd Annual International Conference of the IEEE. , (2000).
  15. Menikou, G., Yiallouras, C., Yiannakou, M., Damianou, C. MRI‐guided focused ultrasound robotic system for the treatment of bone cancer. The International Journal of Medical Robotics and Computer Assisted Surgery. 13 (1), e1753 (2017).
  16. Yiallouras, C., et al. Three-axis MR-conditional robot for high-intensity focused ultrasound for treating prostate diseases transrectally. Journal of Therapeutic Ultrasound. 3 (1), 2 (2015).
  17. Essomba, T., et al. A specific performances comparative study of two spherical robots for tele-echography application. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 228 (18), 3419-3429 (2014).
  18. Bassit, L. A. . Structure mécanique à modules sphériques optimisées pour un robot médical de télé-échographie mobile. , (2005).
  19. Noh, Y., et al. Multi-Axis force/torque sensor based on Simply-Supported beam and optoelectronics. Sensors. 16 (11), 1936 (1936).
  20. Noh, Y., et al. An ergonomic handheld ultrasound probe providing contact forces and pose information. Engineering in Medicine and Biology Society, Proceedings of the 37th Annual International Conference of the IEEE. , (2015).
  21. . Translational Detent – MapleSim Help Available from: https://www.maplesoft.com/support/help/MapleSim/view.aspx?path=DrivelineComponentLibrary/translationalDetent (2018)
check_url/fr/58811?article_type=t

Play Video

Citer Cet Article
Wang, S., Housden, J., Noh, Y., Singh, A., Back, J., Lindenroth, L., Liu, H., Hajnal, J., Althoefer, K., Singh, D., Rhode, K. Design and Implementation of a Bespoke Robotic Manipulator for Extra-corporeal Ultrasound. J. Vis. Exp. (143), e58811, doi:10.3791/58811 (2019).

View Video