Summary

Verwendung von Mikroarrays zur Vernehmung von Mikroumweltauswirkungen auf zelluläre Phänotypen bei Krebs

Published: May 21, 2019
doi:

Summary

Der Zweck der hier vorgestellten Methode ist es, zu zeigen, wie Mikroumgebungsmikroarrays (MEMA) hergestellt und verwendet werden können, um die Auswirkungen von Tausenden von einfachen kombinatorischen Mikroumgebungen auf den Phänotyp kultivierter Zellen abzufragen.

Abstract

Das Verständnis der Auswirkungen der Mikroumgebung auf den Phänotyp von Zellen ist aufgrund der komplexen Mischung sowohl aus löslichen Wachstumsfaktoren als auch matrixassoziierten Proteinen in der Mikroumgebung in vivo ein schwieriges Problem. Darüber hinaus verwenden leicht verfügbare Reagenzien für die Modellierung von Mikroumgebungen in vitro in der Regel komplexe Mischungen von Proteinen, die unvollständig definiert sind und unter der Variabilität von Charge zu Charge leiden. Die Microenvironment Microarray (MEMA)-Plattform ermöglicht die Bewertung tausender einfacher Kombinationen von Mikroumweltproteinen für ihre Auswirkungen auf zelluläre Phänotypen in einem einzigen Test. Die MEMAs werden in Brunnenplatten hergestellt, was die Zugabe einzelner Liganden ermöglicht, um Brunnen zu trennen, die arrayierte extrazelluläre Matrixproteine (ECM) enthalten. Die Kombination des löslichen Liganden mit jedem gedruckten ECM bildet eine einzigartige Kombination. Ein typischer MEMA-Assay enthält mehr als 2.500 einzigartige kombinatorische Mikroumgebungen, denen Zellen in einem einzigen Assay ausgesetzt sind. Als Testfall wurde die Brustkrebszelllinie MCF7 auf der MEMA-Plattform plattiert. Die Analyse dieses Assays identifizierte Faktoren, die das Wachstum und die Proliferation dieser Zellen sowohl verbessern als auch hemmen. Die MEMA-Plattform ist hochflexibel und kann für den Einsatz mit anderen biologischen Fragen über die Krebsforschung hinaus erweitert werden.

Introduction

Die Kultivierung von Krebszelllinien auf Kunststoff in zweidimensionalen (2D) Monolayern bleibt eines der Wichtigsten Arbeitspferde für Krebsforscher. Jedoch, die Mikroumgebung wird zunehmend für seine Fähigkeit, zelluläre Phänotypen zu beeinflussen erkannt. Bei Krebs, die Tumor-Mikroumgebung ist bekannt, mehrere zelluläre Verhaltensweisen beeinflussen, einschließlich Wachstum, Überleben, Invasion, und Reaktion auf Therapie1,2. Herkömmliche monolayer Zellkulturen haben in der Regel keine Mikroumgebungseinflüsse, was zur Entwicklung komplexerer dreidimensionaler (3D) Assays zum Wachsen von Zellen geführt hat, einschließlich kommerziell erhältlicher gereinigter Kellermembranextrakte. Diese gereinigten Matrizen sind jedoch in der Regel kompliziert zu verwenden und leiden unter technischen Problemen wie Chargenvariabilität3 und komplexen Zusammensetzungen3. Infolgedessen kann es schwierig sein, bestimmten Proteinen, die sich aufzelluläre Phänotypen auswirken können, eine Funktion zuzuweisen 3 .

Um diese Einschränkungen zu beheben, haben wir die Microenvironment Microarray (MEMA) Technologie entwickelt, die die Mikroumgebung auf einfache Kombinationen von extrazellulärer Matrix (ECM) und löslichen Wachstumsfaktorproteinenreduziert 4,5 . Die MEMA-Plattform ermöglicht die Identifizierung dominanter Mikroumweltfaktoren, die das Verhalten von Zellen beeinflussen. Mithilfe eines Arrayformats können Tausende von Kombinationen von Mikroumgebungsfaktoren in einem einzigen Experiment ermittelt werden. Das hier beschriebene MEMA hinterfragt 2.500 verschiedene einzigartige Mikroumgebungsbedingungen. ECM-Proteine, die in Brunnenplatten gedruckt werden, bilden Wachstumspads, auf denen Zellen kultiviert werden können. Lösliche Liganden werden einzelnen Brunnen zugesetzt, wodurch an jedem einzelnen Ort, dem die Zellen ausgesetzt sind, einzigartige kombinatorische Mikroumgebungen (ECM + Ligand) entstehen. Zellen werden für mehrere Tage kultiviert, dann fixiert, gefärbt und abgebildet, um zelluläre Phänotypen als Ergebnis der Exposition gegenüber diesen spezifischen Mikroumgebungskombinationen zu bewerten. Da es sich bei den Mikroumgebungen um einfache Kombinationen handelt, ist es einfach, Proteine zu identifizieren, die große phänotypische Veränderungen in den Zellen antreiben. MEMAs wurden erfolgreich verwendet, um Faktoren zu identifizieren, die mehrere zelluläre Phänotypen beeinflussen, einschließlich derjenigen, die Entscheidungen über das Zellschicksal und die Reaktion auf Therapie4,5,6,7vorantreiben. Diese Reaktionen können in einfachen 2D-Experimenten validiert und dann unter Bedingungen beurteilt werden, die die Komplexität der Tumormikroumgebung vollständiger rekapitulieren. Die MEMA-Plattform ist sehr anpassungsfähig an eine Vielzahl von Zelltypen und Endpunkten, vorausgesetzt, dass gute phänotypische Biomarker verfügbar sind.

Protocol

HINWEIS: Eine Übersicht über den gesamten MEMA-Prozess, einschließlich der geschätzten Zeit, ist im Flussdiagramm in Abbildung 1dargestellt. Dieses Protokoll beschreibt die Herstellung von MEMAs in 8-Well-Platten. Das Protokoll kann für andere Platten oder Dias angepasst werden. 1. Herstellung von Protein-, Verdünnungs- und Färbepuffern Ausgleich durch Fläschchen von ECMs, Liganden und Zytokinen auf Raumtemperatur (RT) und kurz Z…

Representative Results

Um die Auswirkungen der Mikroumwelt auf das Zellwachstum und die Zellproliferation zu vereinfachen und Bedingungen zu identifizieren, die das Zellwachstum und die Zellproliferation förderten oder hemmten, wurde die Brustkrebszelllinie MCF7 auf einer Reihe von acht 8-Well-MEMAs gesät, wie im Protokoll beschrieben. Dieser Assay setzte die Zellen 48 verschiedenen EKMs und 57 verschiedenen Liganden für insgesamt 2736 kombinatorische mikroökologische Bedingungen aus. Nach 71 h in der Kultur wurden Zellen mit EdU gepulst, …

Discussion

Die Bedeutung von “Dimensionalität” und Kontext war ein motivierender Faktor bei der Entwicklung von In-vitro-Kultursystemen als Werkzeuge für die Charakterisierung von Krebszellen durch ihre Interaktion mit der Mikroumgebung11und die Fähigkeit von In-vitro-Kultursystemen Kultursysteme, um die in vivo-Umgebung nachzuahmen, sind eine treibende Kraft hinter dem Streben, diese Kultursysteme zu verbessern. In-vitro-Systeme bleiben jedoch wichtige Instrumente der Krebsforschung gerade wegen ihrer F?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde von der NIH Common Fund Library of Network Cellular Signatures (LINCS) gefördert, die HG008100 (J.W.G., L.M.H. und J.E.K.) gewährte.

Materials

Aushon 2470 Aushon BioSystems Arrayer robot system used in the protocol
Nikon HCA Nikon High Content Imaging system designed around Nikon Eclipse Ti Inverted Microscope
BioTek Precision XS liquid Handler BioTek liquid handling robot used in the protocol
Trizma hydrochloride buffer solution Sigma T2069
EDTA Invitrogen 15575-038
Glycerol Sigma G5516
Triton X100 Sigma T9284
Tween 20 Sigma P7949
Kolliphor P338 BASF 50424591
384-well microarray plate, cylindrical well Thermo Fisher ab1055
Nunc 8 well dish Thermo Fisher 267062
Paraformaldehyde 16% solution Electron Microscopy Science 15710
BSA Fisher BP-1600
Sodium Azide Sigma S2002
Cell Mask Molecular Probes H32713
Click-iTEdU Alexa Fluor Molecular Probes C10357
DAPI Promo Kine PK-CA70740043
ALCAM R & D Systems 656-AL ECM
Cadherin-20 (CDH20) R & D Systems 5604-CA ECM
Cadherin-6 (CDH6) R & D Systems 2715-CA ECM
Cadherin-8 (CDH8) R & D Systems 188-C8 ECM
CD44 R & D Systems 3660-CD ECM
CEACAM6 R & D Systems 3934-CM ECM
Collagen I Cultrex 3442-050-01 ECM
Collagen Type II Millipore CC052 ECM
Collagen Type III Millipore CC054 ECM
Collagen Type IV Sigma C5533 ECM
Collagen Type V Millipore CC077 ECM
COL23A1 R & D Systems 4165-CL ECM
Desmoglein 2 R & D Systems 947-DM ECM
E-cadherin (CDH1) R & D Systems 648-EC ECM
ECM1 R & D Systems 3937-EC ECM
Fibronectin R & D Systems 1918-FN ECM
GAP43 Abcam ab114188 ECM
HyA-500K R & D Systems GLR002 ECM
HyA-50K R & D Systems GLR001 ECM
ICAM-1 R & D Systems 720-IC ECM
Laminin Sigma L6274 ECM
Laminin-5 Abcam ab42326 ECM
Lumican R & D Systems 2846-LU ECM
M-Cad (CDH15) R & D Systems 4096-MC ECM
Nidogen-1 R & D Systems 2570-ND ECM
Osteoadherin/OSAD R & D Systems 2884-AD ECM
Osteopontin (SPP) R & D Systems 1433-OP ECM
P-Cadherin (CDH3) R & D Systems 861-PC ECM
PECAM1 R & D Systems ADP6 ECM
Tenascin C R & D Systems 3358-TC ECM
VCAM1 R & D Systems ADP5 ECM
vitronectin R & D Systems 2308-VN ECM
Biglycan R & D Systems 2667-CM ECM
Decorin R & D Systems 143-DE ECM
Periostin R & D Systems 3548-F2 ECM
SPARC/osteonectin R & D Systems 941-SP ECM
Thrombospondin-1/2 R & D Systems 3074-TH ECM
Brevican R & D Systems 4009-BC ECM
Elastin BioMatrix 5052 ECM
Fibrillin Lynn Sakai Lab OHSU N/A ECM
ANGPT2 RnD_Systems_Own 623-AN-025 Ligand
IL1B RnD_Systems_Own 201-LB-005 Ligand
CXCL8 RnD_Systems_Own 208-IL-010 Ligand
IGF1 RnD_Systems_Own 291-G1-200 Ligand
TNFRSF11B RnD_Systems_Own 185-OS Ligand
BMP6 RnD_Systems_Own 507-BP-020 Ligand
FLT3LG RnD_Systems_Own 308-FK-005 Ligand
CXCL1 RnD_Systems_Own 275-GR-010 Ligand
DLL4 RnD_Systems_Own 1506-D4-050 Ligand
HGF RnD_Systems_Own 294-HGN-005 Ligand
Wnt5a RnD_Systems_Own 645-WN-010 Ligand
CTGF Life_Technologies_Own PHG0286 Ligand
LEP RnD_Systems_Own 398-LP-01M Ligand
FGF2 Sigma_Aldrich_Own SRP4037-50UG Ligand
FGF6 RnD_Systems_Own 238-F6 Ligand
IL7 RnD_Systems_Own 207-IL-005 Ligand
TGFB1 RnD_Systems_Own 246-LP-025 Ligand
PDGFB RnD_Systems_Own 220-BB-010 Ligand
WNT10A Genemed_Own 90009 Ligand
PTN RnD_Systems_Own 252-PL-050 Ligand
BMP3 RnD_Systems_Own 113-BP-100 Ligand
BMP4 RnD_Systems_Own 314-BP-010 Ligand
TNFSF11 RnD_Systems_Own 390-TN-010 Ligand
CSF2 RnD_Systems_Own 215-GM-010 Ligand
BMP5 RnD_Systems_Own 615-BMC-020 Ligand
DLL1 RnD_Systems_Own 1818-DL-050 Ligand
NRG1 RnD_Systems_Own 296-HR-050 Ligand
KNG1 RnD_Systems_Own 1569-PI-010 Ligand
GPNMB RnD_Systems_Own 2550-AC-050 Ligand
CXCL12 RnD_Systems_Own 350-NS-010 Ligand
IL15 RnD_Systems_Own 247-ILB-005 Ligand
TNF RnD_Systems_Own 210-TA-020 Ligand
IGFBP3 RnD_Systems_Own 675-B3-025 Ligand
WNT3A RnD_Systems_Own 5036-WNP-010 Ligand
PDGFAB RnD_Systems_Own 222-AB Ligand
AREG RnD_Systems_Own 262-AR-100 Ligand
JAG1 RnD_Systems_Own 1277-JG-050 Ligand
BMP7 RnD_Systems_Own 354-BP-010 Ligand
TGFB2 RnD_Systems_Own 302-B2-010 Ligand
VEGFA RnD_Systems_Own 293-VE-010 Ligand
IL6 RnD_Systems_Own 206-IL-010 Ligand
CXCL12 RnD_Systems_Own 351-FS-010 Ligand
NRG1 RnD_Systems_Own 378-SM Ligand
IGFBP2 RnD_Systems_Own 674-B2-025 Ligand
SHH RnD_Systems_Own 1314-SH-025 Ligand
FASLG RnD_Systems_Own 126-FL-010 Ligand

References

  1. Hanahan, D., Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 21 (3), 309-322 (2012).
  2. Quail, D. F., Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine. 19 (11), 1423-1437 (2013).
  3. Hughes, C. S., Postovit, L. M., Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 10 (9), 1886-1890 (2010).
  4. LaBarge, M. A., et al. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integrative Biology (Cambridge). 1 (1), 70-79 (2009).
  5. Watson, S. S., et al. Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Systems. 6 (3), 329-342 (2018).
  6. Ranga, A., et al. 3D niche microarrays for systems-level analyses of cell fate. Nature Communications. 5, 4324 (2014).
  7. Malta, D. F. B., et al. Extracellular matrix microarrays to study inductive signaling for endoderm specification. Acta Biomater. 34, 30-40 (2016).
  8. Kamentsky, L., et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics. 27 (8), 1179-1180 (2011).
  9. Gagnon-Bartsch, J. A., Jacob, L., Speed, T. P. Removing Unwanted Variation from High Dimensional Data with Negative Controls. University of California, Berkeley, Department of Statistics, University of California, Berkeley. , (2013).
  10. Allan, C., et al. OMERO: flexible, model-driven data management for experimental biology. Nature Methods. 9 (3), 245-253 (2012).
  11. Simian, M., Bissell, M. J. Organoids: A historical perspective of thinking in three dimensions. Journal of Cell Biology. 216 (1), 31-40 (2017).
  12. Bissell, M. J. The differentiated state of normal and malignant cells or how to define a “normal” cell in culture. International Review of Cytology. 70, 27-100 (1981).
  13. Serban, M. A., Prestwich, G. D. Modular extracellular matrices: solutions for the puzzle. Methods. 45 (1), 93-98 (2008).
  14. Kaylan, K. B., et al. Mapping lung tumor cell drug responses as a function of matrix context and genotype using cell microarrays. Integrative Biology (Cambridge). 8 (12), 1221-1231 (2016).
  15. Lin, C. H., Jokela, T., Gray, J., LaBarge, M. A. Combinatorial Microenvironments Impose a Continuum of Cellular Responses to a Single Pathway-Targeted Anti-cancer Compound. Cell Reports. 21 (2), 533-545 (2017).
  16. Gjorevski, N., et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 539 (7630), 560-564 (2016).
check_url/fr/58957?article_type=t

Play Video

Citer Cet Article
Smith, R., Devlin, K., Kilburn, D., Gross, S., Sudar, D., Bucher, E., Nederlof, M., Dane, M., Gray, J. W., Heiser, L., Korkola, J. E. Using Microarrays to Interrogate Microenvironmental Impact on Cellular Phenotypes in Cancer. J. Vis. Exp. (147), e58957, doi:10.3791/58957 (2019).

View Video