Summary

协同前体内窥镜与桥接静脉收获,提高从下腿大萨普努斯静脉移植质量

Published: November 19, 2019
doi:

Summary

这里介绍的是一个从小腿采集前体内窥镜静脉的方案,可以安全地引入常规冠状动脉旁路移植。静脉移植物提供优良的移植质量遵循这个标准化协议与腿的定位,微创访问静脉,和前向内窥镜静脉收获。

Abstract

用于旁路移植的自动移植的超量内窥镜采集可能是解决优异的移植质量和减少术后伤口并发症的最佳策略。这种用于从小腿进行前体内窥镜静脉采集(EVH)的标准化方案有可能引入常规冠状动脉旁路移植(CABG)。接受CABG手术的患者被放置在手术台上,在延长的腿部下方有两个额外的泡沫滚筒,使小腿的EVH水平达到水平。通过桥接静脉采集技术进行微创手术后,将内窥镜光学分段插入伤口。在静脉质量状态和工作通道的连续光学控制下,对主容器和侧分支进行解剖。之后,使用内部双极电凝装置插入内窥镜光学缩回器,用于对侧枝进行精确、安全和组织保护的中断。静脉释放后,在光学控制下,在近端和远端切断血管,从伤口中取回,然后用肝素化盐水进行甲酸盐冲洗。最后,静脉移植的所有侧分支都双夹。在静脉样本的随机选择中分析血管体学。应用此标准化EVH方案后,学习曲线显示陡峭,移植质量足以用于冠状动脉旁路移植。没有转换到手术收获和低风险的组织损伤和出血。腿部定位和协同EVH与桥接静脉收获提高了程序成功和静脉移植质量。在我们手中,从小腿的前坡EVH是可行的,表明直接的移植解剖,以及足够的宏观和微观移植质量与保留的内皮完整性。总之,所介绍的技术是安全的,显示了优良的静脉自移植质量,并说明了选择性和紧急隔离CABG和CABG组合方案的可行性。

Introduction

开放创伤性”低接触”和”无接触”技术已发展多年,用于在冠状动脉旁路移植(CABG)手术或外周旁路移植中收获树液静脉,产生具有优异内皮完整性和长期性移植的移植物。然而,伤口并发症仍然是使用开放技术的主要问题,特别是在肥胖,糖尿病和慢性静脉功能不全患者1,2,3,4。问题出现了,医生如何收获沙文静脉与最佳的移植质量和降低伤口并发症的风险。内窥镜静脉采集(EVH)技术已被证明具有成本效益,临床结果参数可与开放技术相媲美。然而,为了保护EVH期间静脉移植的内皮完整性、组织结构和生理功能,为了保持最佳移植质量2,人们高度赞赏保护静脉移植的策略。与内窥镜技术5相比,最近的研究在开放收获后具有优异的移植性。还表明,桥接静脉收获技术可以直接提高静脉质量6。因此,假设静脉移植收获可以通过在无张力工作通道中与微创桥静脉收获、特定腿部定位和静脉隔离进行协同前坡 EVH 推进。

迄今为止,传统的EVH技术用于采集大树脉,已经使用前腿和前坡方法,为小腿逆行方法。然而,我们经历了这些技术的局限性,并持有有关移植质量的关注。膝盖和上肢的大沙骨静脉经常露出许多侧枝,偶尔显示膨胀的血管直径,导致船舶质量受损,导管和目标血管不匹配,在CABG和再血管化率7、8、9、10、11之后,会对长期移植性产生负面影响。根据我们的经验,小腿的逆行EVH方法反复导致血管内长期失血(由于封闭的静脉瓣膜导致静脉血压升高),组织机械应力增加,出血,血栓形成,移植损伤,移植质量受损。因此,该标准化协议是为从小腿安全前体EVH开发的,将微创访问部位的桥接静脉采集技术与前坡EVH结合在无张力工作通道中,实现足够的静脉移植质量。

Protocol

这项研究符合《赫尔辛基宣言》。该协议遵循独立机构伦理委员会的指导方针,人类生物材料是在知情书面同意后取得的(道德委员会批准:2018-0037)。 1. 腿的位置 注:患者纳入标准包括冠状动脉疾病史,带有CABG手术的选择性/紧急指示,以及需要至少收获一个静脉旁路移植物,以便完全再血管化。排除了使人衰弱的慢性疾病、紧急手术、深静脉血栓形成…

Representative Results

一个经验丰富的心脏外科医生从小腿上执行大沙叶静脉前坡EVH的陡峭学习曲线(图4)。没有转换到手术收获。然而,在学习曲线的开始有四例静脉损伤。在四个病例中的三个病例中,由于外科医生在静脉转移上方分离静脉时,由于工作通道狭窄不足,导致静脉远端发生重大损伤。在两种情况下,一个主要侧枝发生断裂,一个病例的远端静脉被撕裂,导致静脉的远端部分被丢…

Discussion

应该说,我们更喜欢完全动脉冠状动脉再血管化在我们的部门。越来越多的证据表明,CABG使用双边内部乳腺动脉(IMA)移植可以显著提高患者的长期生存14,15,16,17。然而,有正当理由采用”单IMA加静脉移植”策略,特别是在高龄患者、手术部位感染高风险患者、无法获得径向动脉移植的患者以及慢?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢全体外科工作人员的出色技术援助。

Materials

disposable scalpel (size 11, Präzisa Plus) Dahlhausen, Germany a
small curved smooth (anatomical) clamps B. Braun Aesculap, Germany b
toothed (surgical) forceps B. Braun Aesculap, Germany c
surgical scissors B. Braun Aesculap, Germany d
holder for scalpel blade (size 10) B. Braun Aesculap, Germany e
fine smoth (anatomical) forcep B. Braun Aesculap, Germany f
sponge-holding clamp B. Braun Aesculap, Germany g
clipping device Fumedica, Switzerland h
18 Gauge cannula (Sterican) B. Braun, Germany i
light handle Simeon Medical, Germany j
needle holder B. Braun Aesculap, Germany k
tissue retractor B. Braun Aesculap, Germany l
Redon needle B. Braun Aesculap, Germany m
adhesive hook and loop fastener Mölnlycke, Germany n
extended length endoscope Karl Storz, Germany o
optical cable Karl Storz, Germany p
transparent drap camera cover ECOLAB Healthcare, Germany q
connection cable for electrocauterisation Maquet, Getinge Group, Germany r
gas insufflation set Dahlhausen, Germany s
Fred Anti-Fog Solution Medtronic, USA t
bipolar electrocoagulation device Maquet, Getinge Group, Germany u
monitor (WideView) Karl Storz, Germany v
light source (xenon 300) Karl Storz, Germany w
gas insufflation controller (Endoflator) Karl Storz, Germany x
half-cylindrical foam roller Almatros, Gebr. Albrecht KG, Germany y
full-cylindrical foam roller Almatros, Gebr. Albrecht KG, Germany z
bulldog clamp B. Braun Aesculap, Germany aa
flexible vessel cannula Medtronic, USA ab
vessel loop (Mediloops) Dispomedica, Germany ac
Heparin-Natrium (5000 U) in 200ml saline B. Braun, Germany ad
Langenbeck hooks B. Braun Aesculap, Germany ae
sutures (polygalctin 910, Vicryl 2-0, 4-0; poly ethylene terephthalate, Ethibond 2-0) Ethicon, Johnson & Johnson, USA af
Endoscopic vessel harvesting system, Vasoview Hemopro II Maquet, Getinge Group, Germany ag
Octenidindihydrochloride, Octeniderm Schuelke & Mayr GmbH, Germany

References

  1. Kopjar, T., Dashwood, M. R. Endoscopic Versus “No-Touch” Saphenous Vein Harvesting for Coronary Artery Bypass Grafting: A Trade-Off Between Wound Healing and Graft Patency. Angiology. 67 (2), 121-132 (2016).
  2. Krishnamoorthy, B., et al. Study Comparing Vein Integrity and Clinical Outcomes in Open Vein Harvesting and 2 Types of Endoscopic Vein Harvesting for Coronary Artery Bypass Grafting: The VICO Randomized Clinical Trial (Vein Integrity and Clinical Outcomes). Circulation. 136 (18), 1688-1702 (2017).
  3. Andreas, M., et al. Endoscopic vein harvesting is influenced by patient-related risk factors and may be of specific benefit in female patients. Interactive CardioVascular and Thoracic Surgery. 17 (4), 603-607 (2013).
  4. Deppe, A. C., et al. Endoscopic vein harvesting for coronary artery bypass grafting: a systematic review with meta-analysis of 27,789 patients. Journal of Surgical Research. 180 (1), 114-124 (2013).
  5. Kodia, K., et al. Graft patency after open versus endoscopic saphenous vein harvest in coronary artery bypass grafting surgery: a systematic review and meta-analysis. The Annals of Thoracic Surgery. 7 (5), 586-597 (2018).
  6. Krishnamoorthy, B., et al. A randomized study comparing three groups of vein harvesting methods for coronary artery bypass grafting: endoscopic harvest versus standard bridging and open techniques. Interactive CardioVascular and Thoracic Surgery. 15 (2), 224-228 (2012).
  7. Harskamp, R. E., Lopes, R. D., Baisden, C. E., de Winter, R. J., Alexander, J. H. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Annals of Surgery. 257 (5), 824-833 (2013).
  8. Paz, M. A., Lupon, J., Bosch, X., Pomar, J. L., Sanz, G. Predictors of early saphenous vein aortocoronary bypass graft occlusion. The GESIC Study Group. The Annals of Thoracic Surgery. 56 (5), 1101-1106 (1993).
  9. Lopes, R. D., et al. Project of Ex Vivo Vein Graft Engineering via Transfection IV (PREVENT IV) Investigators. Relationship between vein graft failure and subsequent clinical outcomes after coronary artery bypass surgery. Circulation. 125 (6), 749-756 (2012).
  10. Goldman, S., et al. Predictors of graft patency 3 years after coronary artery bypass graft surgery. Department of Veterans Affairs Cooperative Study Group No. 297. Journal of the American College of Cardiology. 29 (7), 1563-1568 (1997).
  11. Sarzaeem, M. R., et al. Scoring system for predicting saphenous vein graft patency in coronary artery bypass grafting. Texas Heart Institute Journal. 37 (5), 525-530 (2010).
  12. Yerebakan, C., Kaminski, A., Liebold, A., Steinhoff, G. Safety of intramyocardial stem cell therapy for the ischemic myocardium: results of the Rostock trial after 5-year follow-up. Cell Transplantation. 16 (9), 935-940 (2007).
  13. Stamm, C., et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. The Journal of Thoracic and Cardiovascular Surgery. 133 (3), 717-725 (2007).
  14. Kinoshita, T., et al. Bilateral versus single internal thoracic artery grafting in dialysis patients with multivessel disease. The Heart Surgery Forum. 13 (5), 280-286 (2010).
  15. Grau, J. B., et al. Propensity matched analysis of bilateral internal mammary artery versus single left internal mammary artery grafting at 17-year follow-up: validation of a contemporary surgical experience. European Journal of Cardio Thoracic Surgery. 41 (4), 770-776 (2012).
  16. Lytle, B. W., et al. The effect of bilateral internal thoracic artery grafting on survival during 20 postoperative years. The Annals of Thoracic Surgery. 78 (6), 2005-2014 (2004).
  17. Lytle, B. W. Prolonging patency–choosing coronary bypass grafts. The New England Journal of Medicine. 351 (22), 2262-2264 (2004).
  18. Kiani, S., et al. Endoscopic venous harvesting by inexperienced operators compromises venous graft remodeling. The Annals of Thoracic Surgery. 93 (1), 11-18 (2012).
  19. Nezafati, M. H., Nezafati, P., Amoueian, S., Attaranzadeh, A., Rahimi, H. R. Immunohistochemistry comparing endoscopic vein harvesting vs. open vein harvesting on saphenous vein endothelium. Journal of Cardiothoracic Surgery. 9, 101 (2014).
  20. García-Altés, A., Peiró, S. A systematic review of cost-effectiveness evidence of endoscopic saphenous vein harvesting: is it efficient. European Journal Of Vascular And Endovascular Surgery. 41 (6), 831-836 (2011).
  21. Rustenbach, C. J., Wachter, K., Franke, U. F. W., Baumbach, H. Expanding Surgical Opportunities: Endoscopic Harvesting of the Vena Saphena Parva in Supine Position. The Thoracic and Cardiovascular Surgeon. 65 (4), 322-324 (2017).
  22. Raja, S. G., Sarang, Z. Endoscopic vein harvesting: technique, outcomes, concerns & controversies. Journal of Thoracic Disease. 5, 630-637 (2013).
  23. Desai, P., et al. Impact of the learning curve for endoscopic vein harvest on conduit quality and early graft patency. The Annals of Thoracic Surgery. 91, 1385-1392 (2011).
  24. Luckraz, H., Cartwright, C., Nagarajan, K., Kaur, P., Nevill, A. Major adverse cardiac and cerebrovascular event and patients’ quality of life after endoscopic vein harvesting as compared with open vein harvest (MAQEH): a pilot study. Open Heart. 5, 000694 (2018).
  25. Khan, S. Z., et al. Endoscopic vein harvest does not negatively affect patency of great saphenous vein lower extremity bypass. Journal of Vascular Surgery. 63 (6), 1546-1554 (2016).
  26. Santo, V. J., et al. Open versus endoscopic great saphenous vein harvest for lower extremity revascularization of critical leg ischemia. Journal of Vascular Surgery. 59 (2), 427-434 (2014).
check_url/fr/59009?article_type=t

Play Video

Citer Cet Article
Klopsch, C., Kaminski, A., Prall, F., Dohmen, P. Synergizing Antegrade Endoscopic with Bridging Vein Harvesting for Improvement of Great Saphenous Vein Graft Quality from the Lower Leg. J. Vis. Exp. (153), e59009, doi:10.3791/59009 (2019).

View Video