Summary

老年小鼠短期高强度间隔训练与跑步机评价

Published: February 02, 2019
doi:

Summary

短时间训练 (≤ 10分钟) 高强度间歇训练 (hiit) 正在成为一种替代较长运动方式的方法, 但在动物研究中很少模拟短变种。在这里, 我们描述了一个 10分钟, 每周 3天, 上高架机 hiit 协议, 提高男性和女性老年小鼠的身体性能。

Abstract

高强度间歇训练 (hiit) 正在成为一种治疗方法, 以防止、延迟或减轻脆弱性。特别是短的会话 hiit, 与方案小于或等于10分钟是特别感兴趣的, 因为几个人类研究功能的例程短, 只要几分钟, 每周几次。然而, 很少有动物研究来模拟短期 hiit 的影响。在这里, 我们描述了一种方法, 为老年小鼠使用倾斜跑步机量身定制和渐进的短周期 hiit 方案 10分钟, 每周3天。我们的方法还包括跑步机评估协议。老鼠最初适应跑步机, 然后给人基线平和上坡跑步机的评估。练习课程从3分钟的热身开始, 然后以快的速度间隔 3分钟, 然后以主动恢复的速度进行1分钟的热身。在这些间隔之后, 老鼠将获得最后一段, 该段以快速开始, 加速1分钟。hiit 协议是单独定制的, 因为每只老鼠的速度和强度是根据最初的厌氧评估分数确定的。此外, 我们还详细介绍了根据性能增加或降低单个小鼠强度的条件。最后, 所有小鼠的强度每两周增加一次。我们之前在这个协议中报告提高了老年雄性小鼠的身体性能, 这里显示它也提高了老年雌性小鼠的跑步机性能。我们的协议的优点包括管理时间低 (每6只小鼠约 15分钟, 每周 3天), 为小鼠提供个性化的策略, 以更好地模拟规定的运动, 以及模块化设计, 允许添加或删除的数量和长度时间间隔, 以滴定运动的好处。

Introduction

经常运动能有效预防或延缓许多与年龄有关的疾病, 如石斑病和脆弱的 1234。然而, 在65岁及65岁以上的人中, 只有不到15% 的人每周能达到150分钟的适度强度运动加力量的建议
训练5,6。由于缺乏时间和长时间的训练是锻炼的常见障碍, 高强度间歇训练正在成为传统方案的替代方案。hiit 的特点是多次短暂的紧张活动爆发, 这些活动夹杂着短暂的主动恢复期, 最近人们对确定仍然产生有益结果的最短方案感兴趣。这些研究包括每周3天的方案, 其总开庭时间为 4分钟7, 2-3分钟8分, 1.5分钟 9分, 单分10, 甚至40分11.

同样, 人们对 hiit 动物模型也有很大的兴趣。大多数研究使用小鼠12,13,14, 15,16,17, 18,19,20, 21或老鼠22,23, 24,25,使用跑步机进行, 虽然其他一些使用游泳协议26,27,28. 这些研究大多使用 vo2最大值来确定练习的初始强度1314192124。此外, 尽管 hiit 的一个经常被描述的好处是有较短的治疗方案, 但几乎所有这些已确定的研究都具有持续30分钟或更长时间的治疗方案 15,18, 19,21,除了一个稍长于10分钟的方案 20, 另一个与19分钟跨越三个不同强度16。据我们所知, 没有报告的动物研究检查10分钟或更少的 hiit 方案, 或根据个别动物定制的方案, 除了我们公布的研究17作为这个协议基础。

在这里, 我们描述了一个用于老年小鼠 hiit 的协议, 该协议旨在模拟最近在人类研究中使用的个性化、会 (≤ 10分钟) 变体789、1011。该方法包括在倾斜 (25°) 跑步机上进行10分钟的养生治疗, 预热 3分钟, 在高强度情况下间隔 4分钟, 中间穿插 3个1分钟主动恢复段。该协议的优点包括更大的临床相关性, 因为它具有为单个动物量身定制强度的策略, 设置不基于 vo2最大值的强度, 从而避免对代谢跑步机的需求, 以及模块化设计, 其中的间隔和计时的数量很容易调整。此外, 在本协议中, 我们还提供了两种跑步机评估策略的说明, 其中包括平面连续和上坡间隔, 以检查耐久性。使用这些方法, 我们扩展了我们先前的研究结果, 即短期会话 hiit 提高了17岁雄性小鼠功能能力, 现在展示 hiit 提高了老年雌性小鼠的跑步机性能。

Protocol

所有的研究和实验规程都得到了布法罗大学和纽约西部动物护理和使用委员会的批准, 并符合这些委员会的准则。 1. 实验设置和一般建议 请注意:本协议从23个月大开始, 在 c57bl/6j 背景下总共使用了24只雌性小鼠。小鼠携带了一个有条件的 sirtloxp-exon4-loxp突变29, 然而, 这并没有在这个实验中诱导。 确保小鼠收到…

Representative Results

共有二十五只雌性小鼠在家里繁殖和衰老。c57bl/6j 背景小鼠携带了一个 sirt1loxp-exon4突变29;然而, 这种条件淘汰赛并没有诱发, 因此所有的小鼠都表现出全长 sirtuin1 (数据未显示)。在24个月大的时候, 对老鼠进行了跑步机耐力和上坡能力的评估, 在进行两个月的 hiit 运动 (n = 14) 之前和之后, 或在剩余的笼子久坐 (n = 11) 之后。我们的数据?…

Discussion

短期训练的好处是引起科学和公众兴趣的高强度间歇训练的一个关键方面。然而, 动物研究很少调查10分钟或更短的 hiit 方案。在这里, 我们描述了一个10分钟的短期会话 hiit 上跑步机锻炼方案的协议, 该方案提高了老年雌性小鼠的跑步机性能, 我们以前已经证明, 这可以提高老年雄性小鼠 17的身体性能。我们的协议的优点是, 除了协议的长度只有 10分钟, 设计是模块化的, 这样就可?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们要感谢布法罗大学动物实验动物设施的动物护理人员。这项研究得到了退伍军人事务康复研究和发展赠款 rx001066 和印度小道基金会的支持。

Materials

Exer-3/6 Open Treadmill w/ Shock, Detection, auto-calibration and PC Interface/Software Columbus Instruments 1055-SDRM The Columbus Instruments 3/6 treadmill allow up to 6 mice or 3 rats simultaneously.
The device comes with controllers to allow manual control of treadmill belt speed and shock intensity, or connections to a computer and software to run and control these elements. 
Bleach Varies Varies 0.25-0.5% Bleach solution (V/V) is used to clean the treadmill belt between sessions
Ethanol Varies Varies 70% ethanol solution (V/V) can alternatively be used to clean treadmill belt between runs and sesions.
Make-up Brush (large) Varies Varies A make-up brush provides a soft surface and ample length to motivate mice to continue exercise.

References

  1. Cameron, I. D., et al. A multifactorial interdisciplinary intervention reduces frailty in older people: randomized trial. BMC Medicine. 11 (65), (2013).
  2. Manas, A., et al. Reallocating Accelerometer-Assessed Sedentary Time to Light or Moderate- to Vigorous-Intensity Physical Activity Reduces Frailty Levels in Older Adults: An Isotemporal Substitution Approach in the TSHA Study. Journal of the American Medical Directors Association. 19 (185), (2018).
  3. Rogers, N. T., et al. Physical activity and trajectories of frailty among older adults: Evidence from the English Longitudinal Study of Ageing. PLoS One. 12, e0170878 (2013).
  4. Yamada, M., Arai, H., Sonoda, T., Aoyama, T. Community-based exercise program is cost-effective by preventing care and disability in Japanese frail older adults. Journal of the American Medical Directors Association. 13, 507-511 (2012).
  5. de Rezende, L. F., Rey-Lopez, J. P., Matsudo, V. K., do Carmo Luiz, O. Sedentary behavior and health outcomes among older adults: a systematic review. BMC Public Health. 14 (333), (2014).
  6. Wullems, J. A., Verschueren, S. M., Degens, H., Morse, C. I., Onambele, G. L. A review of the assessment and prevalence of sedentarism in older adults, its physiology/health impact and non-exercise mobility counter-measures. Biogerontology. 17, 547-565 (2016).
  7. Tjonna, A. E., et al. Low- and high-volume of intensive endurance training significantly improves maximal oxygen uptake after 10-weeks of training in healthy men. PLoS One. 8, e65382 (2013).
  8. Burgomaster, K. A., et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. Journal of Physiology. 586, 151-160 (2008).
  9. Cavar, M., et al. Effects of 6 Weeks of Different High-Intensity Interval and Moderate Continuous Training on Aerobic and Anaerobic Performance. Journal of Strength and Conditioning Research. , (2018).
  10. Gillen, J. B., et al. Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment. PLoS One. 11, e0154075 (2016).
  11. Metcalfe, R. S., Babraj, J. A., Fawkner, S. G., Vollaard, N. B. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. European Journal of Applied Physiology. 112, 2767-2775 (2012).
  12. Belmonte, L. A. O., et al. Effects of Different Parameters of Continuous Training and High-Intensity Interval Training in the Chronic Phase of a Mouse Model of Complex Regional Pain Syndrome Type I. The Journal of Pain. , (2018).
  13. Chavanelle, V., et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Scientific Reports. 7 (204), (2017).
  14. de Oliveira Sa, G., et al. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets. Life Sciences. 189, 8-17 (2017).
  15. Marcinko, K., et al. High intensity interval training improves liver and adipose tissue insulin sensitivity. Molecular Metabolism. 4, 903-915 (2015).
  16. Niel, R., et al. A new model of short acceleration-based training improves exercise performance in old mice. Scandinavian Journal of Medicine and Science in Sports. 27, 1576-1587 (2017).
  17. Seldeen, K. L., et al. High Intensity Interval Training (HIIT) improves physical performance and frailty in aged mice. The Journals of Gerontology Series A Biological Sciences. 73 (4), 429-437 (2017).
  18. Tuazon, M. A., McConnell, T. R., Wilson, G. J., Anthony, T. G., Henderson, G. C. Intensity-dependent and sex-specific alterations in hepatic triglyceride metabolism in mice following acute exercise. Journal of Applied Physiology. 118, 61-70 (2015).
  19. Wang, N., Liu, Y., Ma, Y., Wen, D. High-intensity interval versus moderate-intensity continuous training: Superior metabolic benefits in diet-induced obesity mice. Life Sciences. 191, 122-131 (2017).
  20. Wilson, R. A., Deasy, W., Stathis, C. G., Hayes, A., Cooke, M. B. Intermittent Fasting with or without Exercise Prevents Weight Gain and Improves Lipids in Diet-Induced Obese Mice. Nutrients. 10, (2018).
  21. Hafstad, A. D., et al. High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. Journal of Applied Physiology. 111, 1235-1241 (2011).
  22. Brown, M. B., et al. High-intensity interval training, but not continuous training, reverses right ventricular hypertrophy and dysfunction in a rat model of pulmonary hypertension. American Journal of Physiology Regulatory. Integrative and Comparative Physiology. 312, R197-R210 (2017).
  23. Hoshino, D., Yoshida, Y., Kitaoka, Y., Hatta, H., Bonen, A. High-intensity interval training increases intrinsic rates of mitochondrial fatty acid oxidation in rat red and white skeletal muscle. Applied Physiology, Nutrition, and Metabolism. 38, 326-333 (2013).
  24. Rahimi, M., et al. The effect of high intensity interval training on cardioprotection against ischemia-reperfusion injury in wistar rats. EXCLI Journal. 14, 237-246 (2015).
  25. Songstad, N. T., et al. Effects of High Intensity Interval Training on Pregnant Rats, and the Placenta, Heart and Liver of Their Fetuses. PLoS One. 10, e0143095 (2015).
  26. Motta, V. F., Aguila, M. B., Mandarim-De-Lacerda, C. A. High-intensity interval training (swimming) significantly improves the adverse metabolism and comorbidities in diet-induced obese mice. The Journal of Sports Medicine and Physical Fitness. 56 (5), 655-663 (2015).
  27. Pimenta, M., et al. High-intensity interval training beneficial effects on body mass, blood pressure, and oxidative stress in diet-induced obesity in ovariectomized mice. Life Sciences. , 75-82 (2015).
  28. Vieira, J. M., et al. Caffeine prevents changes in muscle caused by high-intensity interval training. Biomedicine and Pharmacotherapy. 89, 116-123 (2017).
  29. Price, N. L., et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metabolism. 15, 675-690 (2012).
  30. Bains, R. S., et al. Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. Journal of Neuroscience Methods. 300, 37-47 (2018).
  31. Hanell, A., Marklund, N. Structured evaluation of rodent behavioral tests used in drug discovery research. Frontiers in Behavioral Neuroscience. 8 (252), (2014).
  32. Hopkins, M. E., Bucci, D. J. Interpreting the effects of exercise on fear conditioning: the influence of time of day. Behavioral Neuroscience. 124, 868-872 (2010).
  33. Hollinski, R., et al. Young and healthy C57BL/6 J mice performing sprint interval training reveal gender- and site-specific changes to the cortical bone. Scientific Reports. 8, 1529 (2018).
  34. Picoli, C. C., et al. Peak Velocity as an Alternative Method for Training Prescription in Mice. Frontiers in Physiology. 9 (42), (2018).
  35. Castro, B., Kuang, S. Evaluation of Muscle Performance in Mice by Treadmill Exhaustion Test and Whole-limb Grip Strength Assay. Bio-protocol. 7, (2017).
  36. Dougherty, J. P., Springer, D. A., Gershengorn, M. C. The Treadmill Fatigue Test: A Simple, High-throughput Assay of Fatigue-like Behavior for the Mouse. Journal of Visualized Experiments. , 111 (2016).
  37. Conner, J. D., Wolden-Hanson, T., Quinn, L. S. Assessment of murine exercise endurance without the use of a shock grid: an alternative to forced exercise. Journal of Visualized Experiments. 90, e51846 (2014).
  38. Aguiar, A. S., Speck, A. E., Amaral, I. M., Canas, P. M., Cunha, R. A. The exercise sex gap and the impact of the estrous cycle on exercise performance in mice. Scientific Reports. 8, 10742 (2018).
  39. Barbato, J. C., et al. Spectrum of aerobic endurance running performance in eleven inbred strains of rats. Journal of Applied Physiology. 85, 530-536 (1998).
  40. Nagasawa, T. Slower recovery rate of muscle oxygenation after sprint exercise in long-distance runners compared with that in sprinters and healthy controls. Journal of Strength and Conditioning Research. 27, 3360-3366 (2013).
  41. Arnold, J. C., Salvatore, M. F. Getting to compliance in forced exercise in rodents: a critical standard to evaluate exercise impact in aging-related disorders and disease. Journal of Visualized Experiments. (90), (2014).
check_url/fr/59138?article_type=t

Play Video

Citer Cet Article
Seldeen, K. L., Redae, Y. Z., Thiyagarajan, R., Berman, R. N., Leiker, M. M., Troen, B. R. Short Session High Intensity Interval Training and Treadmill Assessment in Aged Mice. J. Vis. Exp. (144), e59138, doi:10.3791/59138 (2019).

View Video