Summary

使用飞行磨坊测量西部玉米根虫的飞行倾向和性能,二溴二恶十二药病毒病毒(LeConte)

Published: October 29, 2019
doi:

Summary

飞行磨机是比较年龄、性别、交配状态、温度或各种其他因素如何影响昆虫飞行行为的重要工具。在这里,我们描述了系绳和测量西方玉米根虫在不同处理下的飞行倾向和性能的协议。

Abstract

西部玉米根虫,二溴代二线虫(乐康特)(科尔普特拉:Chrysomelidae),是美国北部一种经济上重要的玉米害虫。一些种群已经发展出对管理策略的抗药性,包括产生从图林根氏杆菌(Bt)中提取杀虫毒素的转基因玉米。西方玉米根虫传播知识对于抗性进化、传播和缓解模型至关重要。昆虫的飞行行为,尤其是远距离的飞行行为,本质上是难以观察和表征的。飞行工厂提供了一种在实验室中直接测试在实地研究中无法获得的飞行发育和生理影响和后果的方法。在这项研究中,飞行机用测量飞行活动的时间、飞行总数以及雌性根虫在22小时测试期间飞行的距离、持续时间和速度。16个飞行机房被安置在一个环境室,具有可编程的照明、温度和湿度控制。描述的飞行磨机是典型的设计,其中飞行臂可以自由旋转围绕中心枢轴。旋转是由拴在飞行臂一端的昆虫飞行引起的,每次旋转都由带有时间戳的传感器记录。原始数据由软件编译,随后经过处理,提供感兴趣的飞行参数的汇总统计信息。对于任何飞行机的研究,最困难的任务就是用胶粘剂将系绳附着在昆虫上,所使用的方法必须针对每个物种量身定做。附件必须足够坚固,以固定昆虫在刚性方向,并防止在运动过程中脱离,同时不干扰飞行过程中的自然翅膀运动。依恋过程需要灵巧、细腻和速度,为有价值的根虫制作过程的视频素材。

Introduction

1909年,西部玉米根虫,二溴代二零零五病毒,即”玉米”,被确定为栽培玉米的害虫。今天,它是美国玉米带中最重要的玉米害虫,幼虫以玉米根为食,导致与这种害虫相关的产量损失。玉米根虫造成的年管理费用和玉米生产损失估计超过10亿美元。西方玉米根虫适应性强,种群对多种管理策略的抗药性已经形成,包括杀虫剂、作物轮作和转基因Bt玉米3。确定空间维度,哪些策略必须应用来缓解局部的阻力发展,或电阻热点,取决于对分散4的更好理解。如果缓解措施被限制在阻力热点周围的空间尺度太小,将不会成功,因为耐药成年人会分散在缓解区域5之外。了解西方玉米根虫的飞行行为对于制定有效的抗虫病防治方案具有重要意义。

飞行分散在成人西部玉米根虫生命史和生态学中起着重要作用,这种害虫的飞行行为可以在实验室中研究。有几种方法可用于测量实验室中的飞行行为。限制垂直平面飞行的显影仪可以测量昆虫飞行的时间。actograph 已用于比较不同年龄的西方玉米根虫男性和女性的飞行持续时间和周期模式、体型、温度、杀虫剂易感性以及杀虫剂暴露7、8 9.飞行隧道,包括一个跟踪室和定向气流,特别有助于检查昆虫飞行行为时,遵循气味羽流,如候选信息素组件10或植物挥发物11。飞行磨机也许是昆虫飞行行为实验室研究的最常见方法,可以描述飞行倾向和性能的几个方面。实验室飞行工厂已用于研究西方玉米根虫,以特征化倾向进行短和持续飞行,以及激素控制持续飞行12,13。

飞行工厂通过允许研究人员测量各种飞行参数(包括周期、速度、距离和持续时间),为研究实验室条件下昆虫的飞行行为提供了一种相对简单的方法。今天使用的许多飞行磨坊都来自肯尼迪等人14号、克罗格和威斯-福格15号环线。飞行机在形状和尺寸上可能有所不同,但基本原理保持不变。昆虫被系在一起,安装在一个径向水平臂上,可以自由旋转,摩擦力最小,围绕垂直轴旋转。当昆虫向前飞去时,它的路径被限制在水平平面上盘旋,每次旋转的距离由手臂的长度决定。传感器通常用于检测昆虫的飞行活动引起的手臂每次旋转。原始数据包括单位时间的旋转和一天飞行时间发生。数据被输入计算机进行记录。来自多个飞行机场的数据通常并行记录,基本上同时记录,16 个和 32 个飞行机库的库是常见的。原始数据由自定义软件进一步处理,以提供飞行速度、单独飞行总数、飞行距离和飞行持续时间等变量的值。

每个昆虫物种是不同的,当涉及到最好的方法系绳,因为形态变量,如整体大小,大小和形状的目标区域,以附加系绳,柔软,和灵活性的昆虫,需要和方法麻醉,可能污染机翼和/或头部与错位或溢出胶粘剂,以及许多,更多的细节。在可视化的系绳虫16和安布罗西亚甲虫17的情况下,各自用于系绳连接的目标区域相对较大,并且由于头部和翅膀有些不精确的胶粘剂放置而宽容与附件站点分离良好。这不是为了淡化系住这些昆虫的难度,这对任何物种都是苛刻的。但西方玉米根虫是一种特别具有挑战性的昆虫系绳:前体是窄和短,使非常精确的附着与少量的粘合剂(在这种情况下的牙科蜡),以防止干扰对埃利特拉的开口飞行和头部,其中接触眼睛或天线会影响行为。同时,必须牢固地系上系绳,以避免被这种强大的传单移开。根虫成人系绳的示范是本文最重要的课题。它应该有助于其他谁与这种或类似昆虫,在这里可视化的方法可能是一个有用的选择。

本文介绍了用于有效系绳和描述以不同幼虫密度饲养的西方玉米根虫成人的飞行活性的方法。本研究中使用的飞行机和软件(图1)来自Jones等人在互联网上发布的设计。安装在环境室中,旨在控制照明、湿度和温度(图2)。使用这个或类似设置以及以下技术允许测试因素,可能会影响飞行倾向和性能的西方玉米根虫,包括年龄,性别,温度,光周期,和许多其他。

Protocol

1. 用于飞行测试的后西玉米根虫 注:如果成人的年龄必须控制或知道,成人必须首先在现场收集,然后抚养他们的后代到成年进行测试。如果甲虫的年龄或标准化的饲养环境是无关的,那么直接测试现场收集的成年人是可能的,并且协议可以从步骤2开始。 从感兴趣的玉米地收集至少500个西部玉米根虫,以确保获得足够的卵子来饲养足够数量的成年人。使用手动吸气?…

Representative Results

图 4显示了飞行测试后预期输出的代表性示例。飞行数据来自爱荷华州立大学昆虫学系的实验工作。六天大,交配的西方玉米根虫成人被拴在飞行磨坊,并放置在一个受控的环境室设置在14:10 L:D,60%RH和25°C。甲虫在模拟黎明前30分钟开始连续22小时留在飞行工厂,并记录了它们的飞行活动(图4)。黎明和黄昏是在30分钟的时间里,通过从黎明时分到?…

Discussion

描述西方玉米根虫的飞行行为对于制定有效的抗虫管理计划具有重要意义。这种害虫的飞行行为已在实验室中使用各种方法进行了研究,包括电图仪、飞行隧道和飞行机。如本文所述和说明,飞行机允许昆虫进行不间断的飞行,以便研究人员能够在整个测试期间量化飞行参数,如飞行距离、持续时间、周期和速度。

与大多数昆虫物种一样,对西部玉米根虫进行飞行机厂实验?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

E.Y.Y.的毕业生助理工作得到了国家科学基金会I/UCRC,节肢动物管理技术中心的支持,在授予No.IIP-1338775 和行业合作伙伴。

Materials

Butane multi-purpose lighter BIC UXMPFD2DC To soften wax when tethering
Clear polystyrene plastic vial (45-ml) Freund Container and Supply AS112 To hold beetle while anesthetizing
Dehydrated culture media, agar powder Fisher Scientific S14153 To make agar for holding moisture for adults
Delrin rod (1" diameter, 3.75" long) Many suppliers: can use cheapest on the internet. For post of flight mill
Dental wax DenTek 47701000335 Adheres wire tether to prothorax
Ferrite ring magnets (OD: 0.69”, ID: 0.29”, Thickness: 0.118”; 7oz pull) Magnet Shop 63B06929118 Opposing – to generate the float.
Hall effect sensor Optikinc OHN3120U Look under magnetic sensors on the left side of the Optekinc website then look for the part number. A link is given for current suppliers.
Hypodermic tubing (22 gauge; 0.0358” OD x 0.01975” ID x 0.004” wall) Small Parts, Inc. HTX-22T-12 Used for flight mill arms and main axis rod.
Incubator (104.1 x 85.4 x 196.1 cm) Percival Scientific I-41VL
LabVIEW Full Development System software, system-design platform National Instruments (See http://www.ni.com/en-us/shop/labview/select-edition.html) LabVIEW 2018 (Full Edition)  Provides environment needed to run flight mill files (.vi extensions) available for download from Jones et al.18 at http://entomology.tfrec.wsu.edu/VPJ_Lab/Flight-Mill.  LabVIEW 2018 Full is compatible with Win/Mac/Linux operating systems.
Mesh cage (18 x 18 x 18 cm) MegaView Science Co. Ltd. BugDorm-4M1515 mesh size = 44 x 32, 650 µm aperture
Needle tool BLICK 34920-1063 For scoring soil surface for egg laying in laboratory
Nickel ring magnets (3/16” OD x 1/16” ID x: 1/16” thick) K&J Magnetics R311 Used to trigger the digital hall effect sensor.
Petri dish (100 mm x 15 mm) Fisher Scientific S33580A
Plastic container (44-ml) Dart 150PC For initial rearing of young larvae
Plastic container (473-ml) Placon 22885 For rearing of older larvae
Round brush (size 2) Simply Simmons 10472906 For transferring freshly hatched neonates to surface of roots
Sieve (250-µm) Fisher Scientific 08-418-05 To separate eggs from soil
Steel wire (28-gauge) The Hillman Group 38902350282
Teflon rod (3/8" diameter, 3/4" length) United States Plastic Corporation 47503 To accept the rotating arm.
Vacuum  Gast Manufacturing, Inc. 1531-107B-G288X For aspirating adults in laboratory
White poly chiffon fabric Hobby Lobby 194811 To prevent escape of larvae from rearing container

References

  1. Gillette, C. P. Diabrotica virgifera Lec. as a corn root-worm. Journal of Economic Entomology. 5 (4), 364-366 (1912).
  2. Rice, M. E. Transgenic rootworm corn: assessing potential agronomic, economic, and environmental benefits. Plant Management Network. , (2004).
  3. Gray, M. E., Sappington, T. W., Miller, N. J., Moeser, J., Bohn, M. O. Adaptation and invasiveness of western corn rootworm: Intensifying research on a worsening pest. Annual Review of Entomology. 54 (1), 303-321 (2009).
  4. Martinez, J. C., Caprio, M. A. IPM use with the deployment of a nonhigh dose Bt pyramid and mitigation of resistance for western corn rootworm (Diabrotica virgifera virgifera). Environmental Entomology. 45 (3), 747-761 (2016).
  5. Miller, N. J., Sappington, T. W. Role of dispersal in resistance evolution and spread. Current Opinion in Insect Science. 21, 68-74 (2017).
  6. Spencer, J. L., Hibbard, B. E., Moeser, J., Onstad, D. W. Behaviour and ecology of the western corn rootworm (Diabrotica virgifera virgifera LeConte). Agricultural and Forest Entomology. 11, 9-27 (2009).
  7. VanWoerkom, G. J., Turpin, F. T., Barret, J. R. Influence of constant and changing temperatures on locomotor activity of adult western corn rootworms (Diabrotica virgifera) in the laboratory. Environmental Entomology. 9 (1), 32-34 (1980).
  8. Naranjo, S. E. Comparative flight behavior of Diabrotica virgifera virgifera and Diabrotica barberi in the laboratory. Entomologia Experimentalis et Applicata. 55 (1), 79-90 (1990).
  9. Stebbing, J. A., et al. Flight behavior of methyl-parathion-resistant and -susceptible western corn rootworm (Coleoptera: Chrysomelidae) populations from Nebraska. Journal of Economic Entomology. 98 (4), 1294-1304 (2005).
  10. Dobson, I. D., Teal, P. E. A. Analysis of long-range reproductive behavior of male Diabrotica virgifera virgifera LeConte and D. barberi Smith and Lawrence to stereoisomers of 8-methyl-2decyl propanoate under laboratory conditions. Journal of Chemical Ecology. 13 (6), 1331-1341 (1987).
  11. Spencer, J. L., Isard, S. A., Levine, E. Free flight of western corn rootworm (Coleoptera: Chrysomelidae) to corn and soybean plants in a walk-in wind tunnel. Journal of Economic Entomology. 92 (1), 146-155 (1999).
  12. Coats, S. A., Tollefson, J. J., Mutchmor, J. A. Study of migratory flight in the western corn rootworm (Coleoptera: Chrysomelidae). Environmental Entomology. 15 (3), 620-625 (1986).
  13. Coats, S. A., Mutchmor, J. A., Tollefson, J. J. Regulation of migratory flight by juvenile hormone mimic and inhibitor in the western corn rootworm (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America. 80 (5), 697-708 (1987).
  14. Kennedy, J. S., Ainsworth, M., Toms, B. A. Laboratory studies on the spraying of locusts at rest and in flight. Anti-Locust Bull. L. 2, 64 (1948).
  15. Krogh, A., Weis-Fogh, T. A Roundabout for studying sustained flight of Locusts. Journal of Experimental Biology. 29, 211-219 (1952).
  16. Attisano, A., Murphy, J. T., Vickers, A., Moore, P. J. A simple flight mill for the study of tethered flight in insects. Journal of Visualized Experiments. (106), e53377 (2015).
  17. Okada, R., Pham, D. L., Ito, Y., Yamasaki, M., Ikeno, H. Measuring the flight ability of the ambrosia beetle, Platypus quercivorus (Murayama), using a low-cost, small, and easily constructed flight mill. Journal of Visualized Experiments. (138), e57468 (2018).
  18. Jones, V. P., Naranjo, S. E., Smith, T. J. . Insect ecology and behavior: laboratory flight mill studies. , (2010).
  19. Abendroth, L. J., Elmore, R. W., Boyer, M. J., Marlay, S. K. . Corn Growth and Development. , (2011).
  20. Meinke, L. J., Sappington, T. W., Onstad, D. W., Guillemaud, T., Miller, N. J., Komáromi, J., Levay, N., Furlan, L., Kiss, J., Toth, F. Western corn rootworm (Diabrotica virgifera virgifera LeConte) population dynamics. Agricultural and Forest Entomology. 11, 29-46 (2009).
  21. Hammack, L., French, B. W. Sexual dimorphism of basitarsi in pest species of Diabrotica and Cerotoma (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America. 100 (1), 59-63 (2007).
  22. Guss, P. L. The sex pheromone of the western corn rootworm (Diabrotica virgifera). Environmental Entomology. 5 (2), 219-223 (1976).
  23. Hammack, L. Calling behavior in female western corn rootworm beetles (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America. 88 (4), 562-569 (1995).
  24. Minter, M., Pearson, A., Lim, K. S., Wilson, K., Chapman, J. W., Jones, C. M. The tethered flight technique as a tool for studying life-history strategies associated with migration in insects. Ecological Entomology. 43, 397-411 (2018).
  25. Ribak, G., Barkan, S., Soroker, V. The aerodynamics of flight in an insect flight-mill. PLoS One. 12 (11), e0186441 (2017).
  26. Riley, J. R., Downham, M. C. A., Cooter, R. J. Comparison of the performance of leafhoppers on flight mills with that to be expected in free flight. Entomologia Experimentalis et Applicata. 83, 317-322 (1997).
  27. Isard, S. A., Spencer, J. L., Mabry, T. R., Levine, E. Influence of atmospheric conditions on high-elevation flight of western corn rootworm (Coleoptera: Chrysomelidae). Environmental Entomology. 33 (3), 650-656 (2004).
  28. Chapman, J. W., Reynolds, D. R., Wilson, K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecology Letters. 18, 287-302 (2015).
  29. Spencer, J. L., Mabry, T. R., Vaughn, T. T. Use of transgenic plants to measure insect herbivore movement. Journal of Economic Entomology. 96 (6), 1738-1749 (2003).
  30. Isard, S. A., Spencer, J. L., Nasser, M. A., Levine, E. Aerial movement of western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae): diel periodicity of flight activity in soybean fields. Environmental Entomology. 29 (2), 226-234 (2000).
  31. Kim, K. S., Sappington, T. W. Genetic structuring of western corn rootworm (Coleoptera: Chrysomelidae) populations in the U.S. based on microsatellite loci analysis. Environmental Entomology. 34 (2), 494-503 (2005).
check_url/fr/59196?article_type=t

Play Video

Citer Cet Article
Yu, E. Y., Gassmann, A. J., Sappington, T. W. Using Flight Mills to Measure Flight Propensity and Performance of Western Corn Rootworm, Diabrotica virgifera virgifera (LeConte). J. Vis. Exp. (152), e59196, doi:10.3791/59196 (2019).

View Video