Summary

中通量筛选法评估对精子中 ca2 +信号和反应的影响

Published: March 01, 2019
doi:

Summary

在这里, 描述了两个中等吞吐量检测评估对 ca2+信号和顶体反应的影响在人类精子中。这些检测方法可用于快速、轻松地筛选大量化合物, 以确定对人类精子中 ca2 +信号和顶体反应的影响。

Abstract

ca2 +信号转导对正常精子细胞功能和男性生育能力至关重要。同样, 丙烯酸反应对于人类精子细胞穿透透明带并使卵子受精的能力也是至关重要的。因此, 测试化合物 (如环境化学品或候选药物) 对人类精子中 ca2+信号和顶体反应的影响, 以检查对人类精子细胞功能的潜在不利影响, 是非常有趣的。来调查一种可能的避孕药具作用在这里, 两个中等吞吐量的检测描述: 1) 荧光检测评估对 ca2+信号在人类精子中的影响, 2) 图像细胞学测定评估在人类精子中的顶体反应。这些检测方法可用于筛选大量化合物对人类精子中 ca2+信号和顶体反应的影响。此外, 该检测方法可用于生成单个化合物的高度特异性剂量-反应曲线, 确定两种或两种以上化合物的潜在加性/协同作用, 并通过竞争抑制研究作用的药理作用模式catspper 抑制剂的实验。

Introduction

这里描述的两种检测的目的是研究对 ca2+信号和顶体反应的影响, 正如已在使用这些检测1,2的几个出版物中所显示的多种化合物, 34567。ca2 +信号和顶体反应对正常的精子细胞功能和男性生育能力都至关重要。

人类精子细胞的总体目标是使卵子受精。为了能够成功和自然地受精的卵子, 精子细胞的功能必须在精子细胞通过女性生殖道8,9的过程中受到严格的调节。许多精子细胞功能通过细胞内 ca2 +浓度 [ca2 +]i (例如, 精子活力、趋化和顶体反应)调节。此外, 一个成熟过程称为电容, 使精子细胞能够受精的卵子, 部分由 [ca2 +]i10调节。ca2 +挤出 ca2 +-atpase 泵11在人类精子细胞膜上保持约 20, 000倍ca 2 +梯度, 休息 [ca2 +]i为 50-100 nm。如果 ca2 +被允许穿过细胞膜 (例如, 通过 ca2 +通道的开放), 就会发生大量的 ca2 +流入, 从而导致 [ca2 +]i的升高。然而, 精子细胞也携带细胞内 ca2 +储存, 这可以释放 ca2 + , 因此, 也产生了 [ca2 +]i12的升高。有趣的是, 到目前为止, 所有通道介导的人类精子细胞中的 ca2 +流入都是通过 catsper ( sperm 的cat离子通道) 发生的, 这只在精子细胞11中表达。在人类精子细胞中, catspper 通过不同的配体结合位点131415激活内源配体黄体酮和前列腺素, 从而快速引入 ca2 +-流入精子细胞。鸡蛋附近的两个主要来源提供了高水平的这些内源配体。一种是含有高水平黄体酮16的滤泡液.卵泡液与排卵时的卵子一起从成熟的卵泡中释放, 并与输卵管内的液混合 17.另一个主要来源是围绕鸡蛋的积云细胞, 释放高水平的黄体酮和黄体素。黄体酮诱导的精子细胞中的 ca2 +-流入已被证明可以介导对鸡蛋 9,18的趋化作用, 控制精子的活力19,20, 并刺激顶体反应21。触发这些个体 [ca2 +]i调节精子功能在正确的顺序和正确的时间是至关重要的受精卵子8。与此相一致的是, 发现黄体酮引起的 a2 +-流入的次优与男性生育率下降有关2223242526 27,28,29和功能 catspper 是必不可少的男性生育率 26,30,31,32, 33343536

当精子细胞到达卵子时, 必须发生一系列事件才能发生: 1) 精子细胞必须穿透周围的积云细胞层, 2) 与透明带结合, (3) 外塞的顶体含量, 即所谓的顶体反应37, 4) 穿透透明带, 与卵膜融合完成受精 38.为了能够通过这些步骤和卵子受精 , 精子细胞必须首先经历 11 的容量 , 这开始时精子细胞离开含有斩首因子的39 , 并游入雌性的液体中生殖道, 碳酸氢盐和白蛋白含量高 37。电容使精子细胞能够进行超活化, 这是一种运动形式, 鞭毛强烈跳动, 并发生顶体反应37。透明带40的渗透需要超激活的动力, 而丙烯酸含有各种水解酶, 有助于这一渗透过程41。此外, 顶体反应使精子细胞能够与卵子融合, 通过暴露精子-卵子融合42所需的精子表面的特定膜蛋白。因此, 成功受精 40, 42 所需的能力都是进行过度活化和顶体反应的能力。与已经看到的老鼠精子细胞43,44,45, 只有人类精子细胞是顶生体完整可以绑定到透明带46。当人类精子细胞与透明带结合时, 它们必须经历伴随反应, 以穿透透明带 41, 并暴露与卵子38融合所需的特定膜蛋白.因此, 人类精子中顶体反应的时间对受精的发生至关重要。

如上所述, ca2 +信号对正常精子细胞功能8至关重要, 因此, 能够筛选出大量化合物对人类精子细胞中 ca2 +信号的影响是非常有趣的。同样, 由于只有在适当的时间和地点进行顶体反应的人类精子细胞才能穿透透明带, 使卵子4647 受精, 因此, 能够测试化合物的能力也是非常有趣的。影响精子中的顶体反应。为此, 描述了两种中等通量筛选方法: 1) 检测对人类精子细胞中 ca2 +信号的影响, 2) 检测诱导精子细胞中顶体反应的能力。

检测1是一种中等吞吐量的 ca2 +信令检测。这种基于荧光板读取器的技术可同时监测多个井中荧光随时间变化的变化。钙2 +敏感荧光染料, fluo-4 具有 kd 为 ca 2 +335 nm, 并在 am (乙酰氧化甲基) 酯形式为细胞。使用 fluo-4, 可以测量 [ca2 +]i随着时间的推移和精子细胞中感兴趣的化合物的添加后的变化。该检测方法是由 timo strünker 实验室于 2011年13年开发的, 此后已被用于若干研究, 以筛选化合物对人类精子1,2,3的 ca+信号的影响. 4,5。另外, 也使用了类似的方法对多个候选药物进行筛选, 48 人。此外, 这种检测也是有用的评估的药理作用模式 1,2,3,4,5, 剂量反应曲线1, 2,3,4,5, 竞争抑制1, 2,加性1, 2,协同作用3感兴趣的化合物。

检测2是一种中等吞吐量的顶体反应测定。这种基于图像的技术使用三种荧光染料测量样本中可行的顶体反应精子细胞的数量: 碘化铅 (pi)、fitc 耦合的 p相等的松香 (fitc-psa) 凝集素和 hoechst-33342。该方法由 zoppino 等人. 49 人从基于类似的流式细胞仪方法进行了改进, 并已在几项研究 6,7中使用。对于 ca2 +信号法, 该顶核反应测定也可用于评估有关化合物的剂量-反应曲线、抑制、加成和协同作用。

Protocol

议定书中人类精液样本的收集和分析遵循丹麦首都地区研究伦理委员会的准则。所有精液样本都是在自愿捐献者知情同意后获得的。交付后, 样本完全匿名。由于给他们带来不便, 每个捐助者收到的每个样本的费用为500丹麦克朗 (约合75美元)。在分娩当天对样品进行分析, 然后在实验室实验后立即销毁。 注: 介质吞吐量 ca2 +信令分析在步骤4-5 中描述, 介质吞吐量共分反?…

Representative Results

一个实验的结果, 测试4种化合物 (a, b, c 和 d) 的影响, 以及一个积极 (黄体酮) 和负 (缓冲) 控制 [ca2+]i在人类精子使用中等吞吐量 ca2 +信号分析可以在图4a 中看到。在图 4b中, 显示了黄体酮的剂量响应曲线, 该曲线来自于峰值 f/f0 (%)由连续稀释的黄体酮浓度引起的数据, 在另一个实验中使用中等吞吐…

Discussion

中等通量 ca2 +信号检测是基于测量荧光从单个微细胞每个包含约 250, 000个精子细胞。捕获的信号是从井中所有单个精子细胞的平均信号。因此, 该检测没有提供任何空间信息, 说明精子细胞 [ca2 +]i在哪里发生了变化, 精子细胞的变化有多大, 或者反应是怎样的异质性的在单个细胞之间。为了获得这类信息, 必须使用单细胞分辨率实验 (例如, 如 50<…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者希望感谢 timo strünker 的实验室在他们在他的实验室逗留期间对 ar 和 dle 进行监督。此外, 我们要感谢我们在 rijshospitalet 哥本哈根大学医院增长和复制部的同事们协助建立这两项评估。这项工作得到了丹麦创新基金赠款的支持 (赠款号码005-2010-3 和 14-2013-4)。

Materials

0.2 µm pore filter Thermo Fisher Scientific, USA 296-4545
1 L measuring cylinder Thermo Fisher Scientific, USA 3662-1000
1,4 and 2 mL plastic tubes Eppendorf, Germany 30120086 and 0030120094
12-channel pipette Eppendorf, Germany 4861000813
384 multi-well plates Greiner Bio-One, Germany 781096
15 and 50 mL platic tubes Eppendorf, Germany 0030122151 and 30122178
A2-slide ChemoMetec, Denmark 942-0001
Automatic repeater pipette Eppendorf, Germany 4987000010
CaCl2
Centrifuge
Clean wide-mouthed plastic container for semen sample
Dimethyl sulfoxide (DMSO)
FITC-coupled lectin of Pisum sativum (FITC-PSA) Sigma-Aldrich, Germany L0770
Fluo-4 AM Thermo Fisher Scientific, USA F14201
FLUOstar OMEGA fluorescence microplate reader BMG Labtech, Germany
Glucose anhydrous
HEPES
Hoechst-33342 ChemoMetec, Denmark 910-3015
Human serum albumin (HSA) Irvine Scientific 9988 For addition to HTF+
Immobilizing solution containing 0.6 M NaHCO3 and 0.37% (v/v) formaldehyde in distilled water
Incubator
KCl
KH2PO4
Magnetic stirrer
MgSO4
Na-Lactate
NaCl
NaHCO3
NC-3000 image cytometer ChemoMetec, Denmark 970-3003
Pipettes and piptting tips
propidium iodide (PI) ChemoMetec, Denmark 910-3002
Purified water
Rack for placing 50 mL plastic tubes in 45° angle
S100 buffer ChemoMetec, Denmark 910-0101
SP1-cassette ChemoMetec, Denmark 941-0006
Volumetric flasks of appropriate sizes
Vortexer

References

  1. Schiffer, C., et al. Direct action of endocrine disrupting chemicals on human sperm. EMBO reports. , (2014).
  2. Rehfeld, A., Dissing, S., Skakkebæk, N. E. Chemical UV Filters Mimic the Effect of Progesterone on Ca(2+) Signaling in Human Sperm Cells. Endocrinology. 157 (11), 4297-4308 (2016).
  3. Brenker, C., et al. Synergistic activation of CatSper Ca2+ channels in human sperm by oviductal ligands and endocrine disrupting chemicals. Human Reproduction (Oxford, England). 33 (10), 1915-1923 (2018).
  4. Brenker, C., et al. The CatSper channel: a polymodal chemosensor in human sperm. The EMBO Journal. 31 (7), 1654-1665 (2012).
  5. Brenker, C., et al. Action of steroids and plant triterpenoids on CatSper Ca2+ channels in human sperm. Proceedings of the National Academy of Sciences of the United States of America. 115 (3), E344-E346 (2018).
  6. Rehfeld, A., et al. Chemical UV filters can affect human sperm function in a progesterone-like manner. Endocrine Connections. , (2017).
  7. Egeberg Palme, D. L., et al. Viable acrosome-intact human spermatozoa in the ejaculate as a marker of semen quality and fertility status. Human Reproduction. , (2018).
  8. Publicover, S., Harper, C. V., Barratt, C. [Ca2+]i signalling in sperm–making the most of what you’ve got. Nature Cell Biology. 9 (3), 235-242 (2007).
  9. Publicover, S. J., et al. Ca2+ signalling in the control of motility and guidance in mammalian sperm. Frontiers in Bioscience. 13, 5623-5637 (2008).
  10. Publicover, S., Harper, C. V., Barratt, C. [Ca2+]i signalling in sperm–making the most of what you’ve got. Nature Cell Biology. 9 (3), 235-242 (2007).
  11. Lishko, P. V., et al. The control of male fertility by spermatozoan ion channels. Annual Review Of Physiology. 74, 453-475 (2012).
  12. Morris, J., et al. Cell-penetrating peptides, targeting the regulation of store-operated channels, slow decay of the progesterone-induced [Ca2+]i signal in human sperm. Molecular Human Reproduction. 21 (7), 563-570 (2015).
  13. Strünker, T., et al. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature. 471 (7338), 382-386 (2011).
  14. Lishko, P. V., Botchkina, I. L., Kirichok, Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature. 471 (7338), 387-391 (2011).
  15. Miller, M. R., et al. Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science (New York, N.Y.). 352 (6285), 555-559 (2016).
  16. Revelli, A., et al. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reproductive Biology And Endocrinology RB&E. 7, 40 (2009).
  17. Lyons, R. A., Saridogan, E., Djahanbakhch, O. The effect of ovarian follicular fluid and peritoneal fluid on Fallopian tube ciliary beat frequency. Human Reproduction. 21 (1), 52-56 (2006).
  18. Eisenbach, M., Giojalas, L. C. Sperm guidance in mammals – an unpaved road to the egg. Nature reviews. Molecular Cell Biology. 7 (4), 276-285 (2006).
  19. Alasmari, W., et al. The clinical significance of calcium-signalling pathways mediating human sperm hyperactivation. Human Reproduction. 28 (4), 866-876 (2013).
  20. Alasmari, W., et al. Ca2+ signals generated by CatSper and Ca2+ stores regulate different behaviors in human sperm. The Journal of Biological Chemistry. 288 (9), 6248-6258 (2013).
  21. Tamburrino, L., et al. The CatSper calcium channel in human sperm: relation with motility and involvement in progesterone-induced acrosome reaction. Human Reproduction. 29 (3), 418-428 (2014).
  22. Krausz, C., et al. Intracellular calcium increase and acrosome reaction in response to progesterone in human spermatozoa are correlated with in-vitro fertilization. Human Reproduction. 10 (1), 120-124 (1995).
  23. Oehninger, S., et al. Defective calcium influx and acrosome reaction (spontaneous and progesterone-induced) in spermatozoa of infertile men with severe teratozoospermia. Fertility and Sterility. 61 (2), 349-354 (1994).
  24. Shimizu, Y., Nord, E. P., Bronson, R. A. Progesterone-evoked increases in sperm [Ca2+]i correlate with the egg penetrating ability of sperm from fertile but not infertile men. Fertility and Sterility. 60 (3), 526-532 (1993).
  25. Falsetti, C., et al. Decreased responsiveness to progesterone of spermatozoa in oligozoospermic patients. Journal of Andrology. 14 (1), 17-22 (1993).
  26. Williams, H. L., et al. Specific loss of CatSper function is sufficient to compromise fertilizing capacity of human spermatozoa. Human Reproduction. 30 (12), 2737-2746 (2015).
  27. Forti, G., et al. Effects of progesterone on human spermatozoa: clinical implications. Annales d’Endocrinologie. 60 (2), 107-110 (1999).
  28. Krausz, C., et al. Two functional assays of sperm responsiveness to progesterone and their predictive values in in-vitro fertilization. Human Reproduction. 11 (8), 1661-1667 (1996).
  29. Kelly, M. C., et al. Single-cell analysis of [Ca2+]i signalling in sub-fertile men: characteristics and relation to fertilization outcome. Human Reproduction. 33 (6), 1023-1033 (2018).
  30. Brown, S. G., et al. Homozygous in-frame deletion in CATSPERE in a man producing spermatozoa with loss of CatSper function and compromised fertilizing capacity. Human Reproduction. 33 (10), 1812-1816 (2018).
  31. Avenarius, M. R., et al. Human male infertility caused by mutations in the CATSPER1 channel protein. American Journal of Human Genetics. 84 (4), 505-510 (2009).
  32. Smith, J. F., et al. Disruption of the principal, progesterone-activated sperm Ca2+ channel in a CatSper2-deficient infertile patient. Proceedings of the National Academy of Sciences of the United States of America. 110 (17), 6823-6828 (2013).
  33. Hildebrand, M. S., et al. Genetic male infertility and mutation of CATSPER ion channels. European Journal of Human Genetics. 18 (11), 1178-1184 (2010).
  34. Avidan, N., et al. CATSPER2, a human autosomal nonsyndromic male infertility gene. European Journal of Human Genetic. 11 (7), 497-502 (2003).
  35. Zhang, Y., et al. Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. BMJ Case Reports. 2009, (2009).
  36. Jaiswal, D., Singh, V., Dwivedi, U. S., Trivedi, S., Singh, K. Chromosome microarray analysis: a case report of infertile brothers with CATSPER gene deletion. Gene. 542 (2), 263-265 (2014).
  37. Visconti, P. E., Krapf, D., de la Vega-Beltrán, J. L., Acevedo, J. J., Darszon, A. Ion channels, phosphorylation and mammalian sperm capacitation. Asian Journal of Andrology. 13 (3), 395-405 (2011).
  38. Wassarman, P. M., Jovine, L., Litscher, E. S. A profile of fertilization in mammals. Nature Cell Biology. 3 (2), E59-E64 (2001).
  39. Leahy, T., Gadella, B. M. Sperm surface changes and physiological consequences induced by sperm handling and storage. Reproduction. 142 (6), 759-778 (2011).
  40. Suarez, S. S. Control of hyperactivation in sperm. Human Reproduction Update. 14 (6), 647-657 (2008).
  41. Liu, D. Y., Baker, H. W. Inhibition of acrosin activity with a trypsin inhibitor blocks human sperm penetration of the zona pellucida. Biology of Reproduction. 48 (2), 340-348 (1993).
  42. Okabe, M. The cell biology of mammalian fertilization. Development. 140 (22), 4471-4479 (2013).
  43. Inoue, N., Satouh, Y., Ikawa, M., Okabe, M., Yanagimachi, R. Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proceedings of the National Academy of Sciences of the United States of America. 108 (50), 20008-20011 (2011).
  44. Jin, M., et al. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proceedings of the National Academy of Sciences of the United States of America. 108 (12), 4892-4896 (2011).
  45. Hirohashi, N., Yanagimachi, R. Sperm acrosome reaction: its site and role in fertilization. Biology of Reproduction. 99 (1), 127-133 (2018).
  46. Liu, D. Y., Garrett, C., Baker, H. W. G. Acrosome-reacted human sperm in insemination medium do not bind to the zona pellucida of human oocytes. International Journal of Andrology. 29 (4), 475-481 (2006).
  47. Overstreet, J. W., Hembree, W. C. Penetration of the zona pellucida of nonliving human oocytes by human spermatozoa in vitro. Fertility and Sterility. 27 (7), 815-831 (1976).
  48. Martins da Silva, S. J., et al. Drug discovery for male subfertility using high-throughput screening: a new approach to an unsolved problem. Human Reproduction. , 1-11 (2017).
  49. Zoppino, F. C. M., Halón, N. D., Bustos, M. A., Pavarotti, M. A., Mayorga, L. S. Recording and sorting live human sperm undergoing acrosome reaction. Fertility and Sterility. 97 (6), 1309-1315 (2012).
  50. Mata-Martínez, E., et al. Measuring intracellular Ca2+ changes in human sperm using four techniques: conventional fluorometry, stopped flow fluorometry, flow cytometry and single cell imaging. Journal of Visualized Experiments. (75), e50344 (2013).
  51. Egeberg, D. L., et al. Image cytometer method for automated assessment of human spermatozoa concentration. Andrology. 1 (4), 615-623 (2013).
  52. Nash, K., et al. Techniques for imaging Ca2+ signaling in human sperm. Journal of Visualized Experiments. (40), (2010).
check_url/fr/59212?article_type=t

Play Video

Citer Cet Article
Rehfeld, A., Egeberg Palme, D. L., Almstrup, K., Juul, A., Skakkebaek, N. E. Medium-throughput Screening Assays for Assessment of Effects on Ca2+-Signaling and Acrosome Reaction in Human Sperm. J. Vis. Exp. (145), e59212, doi:10.3791/59212 (2019).

View Video