Summary

用于抗倍体植入前基因测试的半导体测序

Published: August 25, 2019
doi:

Summary

这里介绍了一种半导体测序方法,用于非倍体(PGT-A)的植入前基因检测,具有周转时间短、成本低、通量高等优点。

Abstract

染色体非倍体是导致胚胎发育停止、植入失败或妊娠丧失的主要原因之一,在人类胚胎中已有详细记载。非倍体(PGT-A)的植入前基因测试是一种基因测试,通过检测胚胎的染色体异常,显著改善生殖结果。下一代测序(NGS)为基因分析提供了高通量和具有成本效益的方法,并在PGT-A中显示出临床应用性。在这里,我们提出了一种快速和低成本的基于半导体测序的NGS方法,用于筛选胚胎中的非倍体。工作流程的第一步是活检胚胎标本的全基因组扩增(WGA),然后是测序库的构建,以及随后对半导体测序系统的测序。通常,对于 PGT-A 应用程序,可以在每个芯片上加载和排序 24 个样本,以平均读取长度为 150 个碱基对生成 60-8000 万次读取。该方法为执行序列库的模板放大和扩充提供了精细的协议,使PGT-A检测可重复、高通量、经济高效和省时。该半导体音序器的运行时间仅为2~4小时,将接收样品至发布报告的周转时间缩短至5天。所有这些优点使得这种测定成为从胚胎检测染色体非倍体的理想方法,从而有助于它在PGT-A中的广泛应用。

Introduction

选择具有正常染色体拷贝数(双发体)的优质活胚胎进行辅助生殖转移,有助于改善妊娠结局。传统上,成熟的形态分级系统由于其易于获得和非侵入性而被广泛用于胚胎评估。然而,已经表明,形态评估只能提供关于胚胎质量1和植入潜力2的有限信息。一个根本原因是它不能评估胚胎的染色体组成。

染色体非倍体(染色体的异常拷贝数)是导致胚胎发育停止、植入失败或妊娠损失的主要原因之一。非倍体的发生在人类胚胎中已有所记载,在裂解阶段胚胎中占60%-70%,在胚泡5中分别占60%-70%和50%~60%。这在一定程度上造成了提高体外受精(IVF)治疗妊娠率的瓶颈,目前这一比率一直维持在35%-40%左右。因此,选择幼倍体胚胎进行移植被认为有利于改善妊娠结局。为此,进一步开发了非倍体(PGT-A)的植入前基因测试,以利用基因方法研究胚胎的生存能力。支持PGT-A关键作用的随机对照试验和队列研究越来越多。实践证明,PGT-A的应用降低了流产率,提高了临床妊娠率和植入率8,持续妊娠率和活产率9.

从历史上看,PGT-A应用了不同的方法,如荧光原位杂交(FISH)、比较基因组杂交(CGH)、阵列-CGH和单核苷酸多态性(SNP)微阵列。先前的研究表明,FISH用于裂解阶段胚胎的PGT-A结果与使用59273array-CGH或SNP 微阵列5927310.这些差异可归因于染色体马赛克,FISH技术伪影,或胚胎自我纠正的染色体分离错误在开发11。人们普遍认为,使用胚泡营养素(TE)活检阵列为基础的PGT-A,如阵列-CGH或SNP-微阵列,对识别胚胎10、12的染色体不平衡有效。最近,单细胞下一代测序(NGS)为基因分析提供了高通量和具有成本效益的方法,并在PGT-A 13、14、15中显示出临床应用能力,这使得它成为有望替代现有方法。

在这里,我们提出了一种快速、可靠和低成本的基于半导体测序的NGS方法,用于筛选人类胚胎中的非倍体。工作流程的第一步是活检胚胎标本的全基因组扩增(WGA),使用单细胞WGA试剂盒,然后构建测序库,随后在半导体测序系统上进行测序。

通过检测DNA链合成过程中从每个脱氧核苷三磷酸结合中释放的H+离子,系统传输半导体元件捕获的化学信号(pH变化),以直接提供数字数据,进一步解释为DNA序列信息。这种简单的测序化学方法消除了昂贵的光学检测和复杂测序反应的要求,降低了总试剂成本,并将测序运行时间缩短为2⁄4小时16小时。更重要的是,根据制造商的性能规格,半导体测序平台每次运行可以生成多达 15 GB 的测序数据(取决于库的质量),这明显高于其他一些测序器仅生成约 3⁄4 GB 数据(读取长度为 2 x 75 bp)17。在PGT-A的临床应用中,该平台可实现每个芯片24个样本,产生多达8000万次读取17次,每个样品至少100万次唯一读取。读取深度可以确保每个样本至少具有0.05倍的全基因组覆盖率。该平台的上述优点使其成为理想的筛选方法,从而方便了其在PGT-A18中的广泛应用。

Protocol

香港中文大学-新界东集群临床研究伦理委员会(参考编号:2010.432)获道德认可。研究许可证获香港人类生殖科技委员会批准(编号R3004)。 1. 全基因组扩增 开始之前,检查磁珠(材料表)的体积,以确保每个样品的磁珠量不低于135μL(超过20%)。将磁珠保持在室温(RT)至少30分钟。为每个样品制备720μL(多20%)乙醇。在105°C下为热循环器(材料?…

Representative Results

基于这一修改协议,首次将半导体测序平台应用于PGT-A。我们测试了裂解阶段胚泡和胚泡阶段胚胎的活检。建议活检细胞尽快进行WGA,以防止DNA降解。以前的研究比较了不同WGA方法的性能,指出我们在这里描述的方法在100KB20的bin大小下具有最佳的均匀性。考虑到均匀性和中位数绝对成对差(MAPD)21的性能,使用半导体定序器为PGT-A选择?…

Discussion

与其他测序化学不同,此处描述的定序器使用半导体检测核苷酸。芯片本身是一种电子设备,通过聚合酶驱动的碱基结合17检测氢离子,使质子计划的测序时间达到2⁄4小时。此外,该芯片是一种微孔芯片,允许定位一个目标分子,这不同于其他测序器的流细胞测序化学。该协议是针对 PGT-A 应用优化的经过修改的协议。优化包括通过酶法对扩增DNA进行碎片化,而不是声波,以减?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项研究得到了香港综合研究基金(参考文献号14162417)、国家自然科学基金(参考文献号81860272)、广西省科学技术基金重大研究计划(参考文献号81860272)的支持。AB16380219)和中国博士后科学基金资助(参考号2018M630993) 。

Materials

PCR tubes, 0.2 mL Axygen PCR-02D-C
UltraPure 0.5M EDTA, pH 8.0 ThermoFisher 15575020
PBS, pH 7.4, Ca2+ and Mg2+ free ThermoFisher 10010023
1.0 M NaOH (1.0N) solution SIGMA-ALDRICH S2567 For Melt-off solution. Molecular grade
Eppendorf LoBind Tubes, 1.5 mL Fisher Scientific 13-698-791
Ion Plus Fragment Library Kit ThermoFisher 4471252
ELGA PURELAB Flex 3 Water Purification System or
Equivalent 18 MΩ water system
ThermoFisher 4474524
Ion Plus Fragment Library Kit ThermoFisher 4471252
PicoPLEX WGA Amplification buffer Rubicon Genomics R30050 This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-03.
PicoPLEX WGA Amplification enzyme Rubicon Genomics R30050 This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-03.
Ion OneTouch Amplification Plate In kit: Ion OneTouch 2 Supplies (Part No. A26367). Extended kit component in Sheet 5
Ion PI Annealing Buffer
MyOne Beads Capture Solution
Agilent 2100 Bioanalyzer instrument Agilent G2939AA
Ion OneTouch Breaking Solution (black cap) In kit: Ion PI Hi‑Q OT2 Solutions 200 (Part No. A26429). Extended kit component in Sheet 5
Dynabeads MyOne Streptavidin C1 ThermoFisher 65001
PicoPLEX WGA Cell extraction buffer Rubicon Genomics R30050 This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-00.
PicoPLEX WGA Cell extraction enzyme Rubicon Genomics R30050 This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-03.
Ion PI Chip Kit v3 ThermoFisher A26771
Ion Chip Minifuge, 230 V ThermoFisher 4479673
Ion PI dATP ThermoFisher A26772
Ion PI dCTP ThermoFisher A26772
Ion PI dGTP ThermoFisher A26772
Ion Plus Fragment Library Kit ThermoFisher 4471252
Ion Plus Fragment Library Kit ThermoFisher 4471252
ThermoQ–Temperature Dry Bath TAMAR HB-T2-A
NEBNext dsDNA Fragmentase New England Biolabs M0348L
NEBNext dsDNA Fragmentase New England Biolabs M0348L
Ion PI dTTP ThermoFisher A26772
Ion OneTouch 2 Instrument ThermoFisher INS1005527 ThermoFisher Catalog number: 4474778.
Ion Plus Fragment Library Kit ThermoFisher 4471252
Ion One Touch ES ThermoFisher 8441-22 ThermoFisher Catalog number: 4469495. Extended kit component in Sheet 5
Ethanol SIGMA-ALDRICH 51976 This can be replaced by any brand's molecular grade absolute ethanol.
PicoPLEX WGA Extraction enzyme dilution buffer Rubicon Genomics R30050 This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-01.
PicoPLEX WGA Extraction enzyme dilution buffer Rubicon Genomics R30050 This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-02.
Qubit 3.0 Fluorometer ThermoFisher Q33216 This model has been replaced by Qubit 4 Fluorometer, Catalog number: Q33226.
Qubit ds DNA HS Assay kit ThermoFisher M2002-02
Qubit Assay Tubes ThermoFisher Q32856
Ion PI Foaming Solution ThermoFisher A26772
Index for barcoding of libraries BaseCare this is a in-house prepared index. Users can buy commercial product from ThermoFisher Ion Xpress Barcode Adapters Kits (Cat. No. 4474517)
Ion PI Loading Buffer ThermoFisher A26772
Solid(TM) Buffer Kit-1X Low TE Buffer ThermoFisher 4389764
Agencour AMPure XP Kit Beckman Coulter A63880
DynaMag-2 magnet (magnetic rack) ThermoFisher 12321D
Ion PI Master Mix PCR buffer
Sorvall Legend Micro 17 Microcentrifuge Micro 17 75002430
Ion Plus Fragment Library Kit ThermoFisher 4471252
Nuclease-free water ThermoFisher AM9922 This can be replaced by other brand.
PicoPLEX WGA Nuclease-free water Rubicon Genomics R30050 This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-03.
Ion OneTouch Oil bottle Ion PI Hi‑Q OT2 Solutions 200 (Part No. A26429). Extended kit component in Sheet 5
Ion Plus Fragment Library Kit ThermoFisher 4471252 Extended kit component in Sheet 3
double-strand DNA standard This is a in-house prepared DNA standard for calibration of Qubit before quantification of library.
PicoPLEX WGA Preamplification buffer Rubicon Genomics R30050 This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-03.
PicoPLEX WGA Preamplification enzyme Rubicon Genomics R30050 This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-03.
Library Amplification Primer Mix ThermoFisher 4471252 Extended kit component in Sheet 3
Ion OneTouch Reaction Filter Extended kit component in Sheet 5
Recovery Router Extended kit component in Sheet 5
Recovery Tubes Extended kit component in Sheet 5
ISP Resuspension Solution
Ion Proton ThermoFisher DA8600 This model is imported by Da An Gene Co.,LTD. of Sun Yat-Sen University from ThermoFisher and has been certified by China Food and Drug Administration for clinical application. The catalog number in ThermoFisher is 4476610.
Ion PI Hi‑Q Sequencing Polymerase ThermoFisher A26772
Ion PI Sequencing Primer
server for sequencer Lenovo T260
Ion PI Sphere Particles
Platinum PCR SuperMix High Fidelity ThermoFisher 4471252
Nalgene 25mm Syringe Filters ThermoFisher 724-2045 Pore size: 0.45μm. Specifically for aqueous fluids.
Ion PI Hi‑Q W2 Solution ThermoFisher A26772
Ion PI 1X W3 Solution ThermoFisher A26772
Ion OneTouch Wash Solution C1
The Ion PGM Hi‑Q View Sequencing Kit ThermoFisher A30044 Extended kit component in Sheet 2
Ion Plus Fragment Library Kit ThermoFisher 4471252 Extended kit component in Sheet 3
Ion PI Hi-Q Sequencing 200 Kit (1 sequencing run per initialization) ThermoFisher A26772 Extended kit component in Sheet 4
Ion PI Hi‑Q OT2 200 Kit ThermoFisher A26434 Extended kit component in Sheet 5

References

  1. Balaban, B., Urman, B. Effect of oocyte morphology on embryo development and implantation. Reproductive BioMedicine Online. 12 (5), 608-615 (2006).
  2. Capalbo, A., et al. Correlation between standard blastocyst morphology, euploidy and implantation: An observational study in two centers involving 956 screened blastocysts. Human Reproduction. 29 (6), 1173-1181 (2014).
  3. Magli, M. C., Gianaroli, L., Ferraretti, A. P. Chromosomal abnormalities in embryos. Molecular and Cellular Endocrinology. 183, 29-34 (2001).
  4. Trussler, J. L., Pickering, S. J., Ogilvie, C. M. Investigation of chromosomal imbalance in human embryos using comparative genomic hybridization. Reproductive BioMedicine Online. 8 (6), 701-711 (2004).
  5. Fragouli, E., et al. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: Scientific data and technical evaluation. Human Reproduction. 26 (2), 480-490 (2011).
  6. Calhaz-Jorge, C., et al. Assisted reproductive technology in Europe, 2013: Results generated from European registers by ESHRE. Human Reproduction. 32 (10), 1957-1973 (2017).
  7. Dyer, S., et al. International committee for monitoring assisted reproductive technologies world report: Assisted reproductive technology 2008, 2009 and 2010. Human Reproduction. 31 (7), 1588-1609 (2008).
  8. Dahdouh, E. M., Balayla, J., García-Velasco, J. A. Comprehensive chromosome screening improves embryo selection: A meta-analysis. Fertility and Sterility. 104 (6), 1503-1512 (2015).
  9. Chen, M., Wei, S., Hu, J., Quan, S. Can Comprehensive Chromosome Screening Technology Improve IVF/ICSI Outcomes? A Meta-Analysis. PloS One. 10 (10), e0140779 (2015).
  10. Northrop, L. E., Treff, N. R., Levy, B., Scott, J. T. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Molecular Human Reproduction. 16 (8), 590-600 (2010).
  11. Barbash-Hazan, S., et al. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertility and Sterility. 92 (3), 890-896 (2009).
  12. Fragouli, E., et al. Comprehensive cytogenetic analysis of the human blastocyst stage. Fertility and Sterility. 90 (11), S36 (2008).
  13. Fiorentino, F., et al. Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertility and Sterility. 101 (5), 1375-1382 (2014).
  14. Fiorentino, F., et al. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Human Reproduction. 29 (12), 2802-2813 (2014).
  15. Wells, D., et al. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. Journal of Medical Genetics. 51 (8), 553-562 (2014).
  16. Quail, M. A., et al. A tale of three next generation sequencingplatforms: comparison of Ion Torrent, PacificBiosciences and Illumina MiSeq sequencers. BMC Genomics. 13 (1), 1-13 (2012).
  17. Goodwin, S., McPherson, J. D., McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics. 17 (6), 333-351 (2016).
  18. Bono, S., et al. Validation of a semiconductor next-generation sequencing-based protocol for preimplantation genetic diagnosis of reciprocal translocations. Prenatal Diagnosis. 35 (10), 938-944 (2015).
  19. Harton, G. L., et al. ESHRE PGD Consortium/Embryology Special Interest Groupbest practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS). Human Reproduction. 26 (1), 41-46 (2011).
  20. Liu, W. Q., et al. The performance of MALBAC and MDA methods in the identification of concurrent mutations and aneuploidy screening to diagnose beta-thalassaemia disorders at the single- and multiple-cell levels. Journal of Clinical Laboratory Analysis. 32 (2), 1-8 (2018).
  21. Zhang, X., et al. The comparison of the performance of four whole genome amplification kits on ion proton platform in copy number variation detection. Bioscience Reports. 37 (4), BSR20170252 (2017).
  22. Munné, S., Grifo, J., Wells, D. Mosaicism: “survival of the fittest” versus “no embryo left behind”. Fertility and Sterility. 105 (5), 1146-1149 (2016).
  23. Del Carmen Nogales, M., et al. Type of chromosome abnormality affects embryo morphology dynamics. Fertility and Sterility. 107 (1), 229-235 (2017).
  24. Harton, G. L., et al. ESHRE PGD consortium best practice guidelines for amplification-based PGD. Human Reproduction. 26 (1), 33-40 (2011).
  25. Deleye, L., et al. Shallow whole genome sequencing is well suited for the detection of chromosomal aberrations in human blastocysts. Fertility and Sterility. 104 (5), 1276-1285 (2015).
  26. Bielanska, M., Tan, S. L., Ao, A. Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Human Reproduction. 17 (2), 413-419 (2002).
  27. Treff, N. R., et al. Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertility and Sterility. 99 (5), 1377-1384 (2013).
check_url/fr/59273?article_type=t

Play Video

Citer Cet Article
Gui, B., Zhang, Y., Liang, B., Kwok, Y. K. Y., Lui, W. T., Yeung, Q. S. Y., Kong, L., Xuan, L., Chung, J. P. W., Choy, K. W. Semiconductor Sequencing for Preimplantation Genetic Testing for Aneuploidy. J. Vis. Exp. (150), e59273, doi:10.3791/59273 (2019).

View Video