Summary

利用 PiggyBac 载体将人诱导的多能干细胞 (Ipsc) 转化为功能性脊柱和颅内运动神经元

Published: May 01, 2019
doi:

Summary

该协议允许诱导多能干细胞快速有效地转换为具有脊柱或颅内身份的运动神经元, 通过从诱导的 piggyBac 载体的转录因子的异位表达。

Abstract

我们这里描述了一种方法来获得功能性脊椎和颅内运动神经元从人类诱导的多能干细胞 (Ipsc)。直接转化为运动神经元是通过转录因子的替代模块, 即 Ngn2、Isl1 和 Lhx3 (NIL) 或 Ngn2、Isl1 和 Phox2a (NIP) 的异位表达而获得的。NIL 和 NIP 分别指定脊柱和颅内运动神经元的身份。我们的协议从生成修改后的 iPSC 线开始, 在这些线路中, NIL 或 NIP 通过 piggyBac 转座子载体稳定地集成到基因组中。然后由多西环素诱导转基因基因的表达, 并在5天内导致 Ipsc 转化为 MN 祖细胞。随后的成熟, 7天, 导致脊柱或颅内 Mna 的同质种群。与以前的协议相比, 我们的方法有几个优点: 它非常快速和简化;它不需要病毒感染或进一步 MN 分离;它允许产生不同的 MN 亚群 (脊椎和颅骨) 与显著的成熟程度, 这证明了火训练的动作电位。此外, 大量的运动神经元可以获得没有纯化从混合人群。ipsc 衍生的脊髓和颅内运动神经元可用于肌萎缩侧索硬化症和运动神经神经元的其他神经退行性疾病的体外建模。均匀运动神经元群可能是细胞类型特异性药物筛选的重要资源。

Introduction

运动神经元 (MN) 变性在肌萎缩侧索硬化症 (ALS) 和脊髓肌萎缩 (SMA) 等人类疾病中起着致病作用。建立合适的体外细胞模型系统, 总结人类 MN 的复杂性, 是朝着发展新的治疗方法迈出的重要一步。诱导多能干细胞 (ipsc) 具有显著的多系分化特性, 目前已从一些受运动神经元疾病 1,2 的患者中提取。从控制 “健康” 多能干细胞3开始, 基因编辑产生了更多携带与 MN 疾病相关的致病突变的 iPSC 系.这些生产线是体外疾病建模和药物筛选的有用工具, 前提是有适当的 iPSC 分为 Mn 的方法。这种方法发展的基本原理是为对 MN 疾病感兴趣的科学界提供快速有效的分化协议, 从而产生成熟的功能 Mn。此方法的第一个优点是其执行时间范围。另一个相关的强项来自于任何净化步骤的消除。最后, 该协议可用于生成两个不同的运动神经元群。

生成不同子类型的 mn 的可能性与 MN 疾病的建模特别相关。并非所有的 MN 亚型在 ALS 和 SMA 中都同样脆弱, 不同运动单位的症状出现对预后有很大影响。在 ALS 中, 脊柱出现症状开始于上肢和下肢, 导致死亡约 3-5年 4.相反, 球囊发作, 从颅骨 MNs 的退化开始, 有一个最坏的预后。此外, rna 结合蛋白 FUS 和 TDP-43 突变患者的球状发病百分比明显高于 SOD1 突变5患者。几乎所有的替代 mn 分化协议依赖于维甲酸 (ra) 的活性, 这赋予了脊椎字符分化 ipsc6,7,8。这限制了研究内在因素的可能性, 而内在因素可能对特定的 mn 亚型9、10 具有保护作用。

与以前在小鼠胚胎干细胞11中的研究一致, 我们最近已经表明, 在人类 Ipsc 中, Ngn2、isl1 和 Lhx3 (nil) 的异位表达诱导了脊柱 mn 的身份, 而 Ngn2 和 isl1 加 phox2a (nip) 则指定了颅内 mn12。因此, 我们开发了一个高效的协议, 导致在12天的周转时间内生产具有功能特性的人类 MNs。这种方法的目的是在很短的时间内, 在不需要纯化的情况下 (例如, 通过流式细胞仪), 获得具有脊柱或颅内身份的 MNs 高度丰富的细胞群。

Protocol

1. 人类 Ipsc 的维护 基质涂层板的制备 在4°C 下连夜解冻一个5毫升的基质 (见材料表)。原始的基质库存在不同的库存浓度下, 并根据数据表上显示的稀释系数进行。重要的是要保持小瓶和管冰凉, 以防止过早的胶凝矩阵。在冰上预先冷却的低温管中, 将基质分配到等价物中。在-20°c 时冻结未使用的脂肪。 将一个放在冰上大约2小时才能解冻。 <li…

Representative Results

图 1显示了微分方法的示意图描述。人体 Ipsc (WT I线 3) 通过 epB-Bsd-TT-NIL 或 EpB-Bsd-TT-NIL 进行转染, 在选择无菌性细胞线12后生成稳定和诱导细胞系, 以下分别称为 Ipsc-nil 和 ipsc-nip。对分化细胞的多能性标记 OCT4 和泛神经元标记 TUJ1 的表达进行了表征。免疫染色分析显示, 在没有 TUJ1 阳性的情况下, 在第0天, OCT4 在所有细胞中的表达均匀 (<strong c…

Discussion

由于谱系特异性转录因子的异位表达, 该协议可以有效地将人的 Ipsc 转化为脊柱和颅内运动神经元。这些转基因是由多西环素诱导和稳定地集成在基因组中感谢一个 piggyBac 转座子基载体。在混合人群中, 一个或多个携带 Bac 载体的副本将随机整合到单个细胞的基因组中, 从而增加基因组完整性改变的风险。此外, 随着时间的推移, 可能会逐步选择 iPSC 亚克隆, 可能会对分化以及疾病和控制细胞系的比?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者希望感谢意大利纳米科学研究所生命纳米科学中心的成像设施提供的支持和技术咨询。我们感谢生命纳米科学中心的成员进行了有益的讨论。这项工作得到了 AriSLA (2016年 “StressFUS” 试点赠款) 向 AR 提供的赠款的部分支持。

Materials

5-Bapta Sigma-Aldrich A4926-1G chemicals for electrophysiological solutions
Accutase Sigma-Aldrich A6964-100ML  Cell dissociation reagent
anti-CHAT EMD Millipore  AB144P Anti-Choline Acetyltransferase. Primary antibody used in immunostaining assays. RRID: AB_2079751; Lot number: 2971003
anti-goat Alexa Fluor 488  Thermo Fisher Scientific  A11055 Secondary antibody used for immonofluorescence assays. RRID: AB_2534102; Lot number: 1915848
anti-mouse Alexa Fluor 647 Thermo Fisher Scientific  A31571 Secondary antibody used for immonofluorescence assays. RRID: AB_162542; Lot number: 1757130
anti-Oct4  BD Biosciences 611202 Primary antibody used in immunostaining assays. RRID: AB_398736; Lot number: 5233722
anti-Phox2b Santa Cruz Biotechnology, Inc. sc-376997 Primary antibody used in immunostaining assays. Lot number: E0117
anti-rabbit Alexa Fluor 594  Immunological Sciences IS-20152-1 Secondary antibody used for immonofluorescence assays
anti-TUJ1  Sigma-Aldrich  T2200 Primary antibody used in immunostaining assays. RRID: AB_262133
B27 Miltenyi Biotec 130-093-566 Serum free supplement for neuronal cell maintenance
Bambanker Nippon Genetics NGE-BB02 Cell freezing medium, used here for motor neuron progenitors
BDNF PreproTech 450-02 Brain-Derived Neurotrophic Factor
Blasticidin Sigma-Aldrich 203350 Nucleoside antibiotic that inhibits protein synthesis in prokaryotes and eukaryotes
BSA Sigma-Aldrich A2153 Bovine Serum Albumin. Blocking agent to prevent non-specific binding of antibodies in immunostaining assays
CaCl2 Sigma-Aldrich C3881 chemicals for electrophysiological solutions
Clampex 10 software Molecular Devices Clampex 10 Membrane currents recording system
Corning Matrigel hESC-qualified Matrix Corning 354277 Reconstituted basement membrane preparation from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma. Used for adhesion of iPSC to plastic and glass supports
CRYOSTEM ACF FREEZING MEDIA Biological Industries 05-710-1E Freezing medium for human iPSCs
D-Glucose Sigma-Aldrich G5146 chemicals for electrophysiological solutions
DAPI powder Roche 10236276001 4′,6-diamidino-2-phenylindole. Fluorescent stain that binds to adenine–thymine rich regions in DNA used for nuclei staining in immonofluorescence assays
DAPT AdipoGen AG-CR1-0016-M005 Gamma secretase inhibitor
Dispase Gibco 17105-041 Reagent for gentle dissociation of human iPSCs
DMEM/F12 Sigma-Aldrich D6421-500ML Basal medium for cell culture
Doxycycline Sigma-Aldrich D9891-1G  Used to induce expression of transgenes from epB-Bsd-TT-NIL and epB-Bsd-TT-NIP vectors
DS2U  WiCell UWWC1-DS2U Commercial human iPSC line
E.Z.N.A Total RNA Kit  Omega bio-tek R6834-02 Kit for total extraction of RNA from cultured eukaryotic cells
GDNF PreproTech 450-10 Glial-Derived Neurotrophic Factor
Gibco Episomal hiPSC Line Thermo Fisher Scientific A18945 Commercial human iPSC line
Glutamax Thermo Fisher Scientific 35050038 An alternative to L-glutamine with increased stability. Improves cell health.
Hepes Sigma-Aldrich H4034 chemicals for electrophysiological solutions
iScript Reverse Transcription Supermix for RT-qPCR  Bio-Rad 1708841 Kit for gene expression analysis using real-time qPCR
iTaqTM Universal SYBR Green Supermix  Bio-Rad 172-5121  Ready-to-use reaction master mix optimized for dye-based quantitative PCR (qPCR) on any real-time PCR instrument
K-Gluconate Sigma-Aldrich G4500 chemicals for electrophysiological solutions
KCl Sigma-Aldrich P9333 chemicals for electrophysiological solutions
L-ascorbic acid LKT Laboratories A7210 Used in cell culture as an antioxidant
Laminin Sigma-Aldrich 11243217001 Promotes attachment and growth of neural cells in vitro
Laser scanning confocal microscope  Olympus  iX83 FluoView1200 Confocal microscope for acquisition of immunostaining images
Mg-ATP Sigma-Aldrich A9187 chemicals for electrophysiological solutions
MgCl2 Sigma-Aldrich M8266 chemicals for electrophysiological solutions
Mounting Medium  Ibidi 50001 Mounting solution used for confocal microscopy and immunofluorescence assays
Multiclamp patch-clamp amplifier Molecular Devices 700B Membrane currents recording system
Na-GTP Sigma-Aldrich G8877 chemicals for electrophysiological solutions
NaCl Sigma-Aldrich 71376 chemicals for electrophysiological solutions
NEAA Thermo Fisher Scientific 11140035 Non-Essential Amino Acids. Used as a supplement for cell culture medium, to increase cell growth and viability.
Neon 100 μL Kit Thermo Fisher Scientific MPK10096 Cell electroporation kit
Neon Transfection System Thermo Fisher Scientific MPK5000 Cell electroporation system
Neurobasal Medium Thermo Fisher Scientific 21103049 Basal medium designed for long-term maintenance and maturation of neuronal cell populations without the need for an astrocyte feeder layer
NutriStem-XF/FF  Biological Industries 05-100-1A Human iPSC culture medium
Paraformaldehyde Electron Microscopy Sciences 157-8 Used for cell fixation in immunostaining assays
PBS Sigma-Aldrich D8662-500ML Dulbecco s Phosphate Buffer Saline w Calcium w Magnesium
PBS Ca2+/Mg2+ free Sigma-Aldrich D8537-500ML Dulbecco s Phosphate Buffer Saline w/o Calcium w/o Magnesium
Penicillin/Streptomycin  Sigma-Aldrich P4333-100ML Penicillin/Streptomicin solution used to prevent cell culture contamination from bacteria.
poly-ornithine Sigma-Aldrich P4957 Promotes attachment and growth of neural cells in vitro
SU5402 Sigma-Aldrich SML0443-5MG Selective inhibitor of vascular endothelial growth factor receptor 2 (VEGFR-2)
Triton X-100  Sigma-Aldrich T8787 4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol, t-Octylphenoxypolyethoxyethanol, Polyethylene glycol tert-octylphenyl ether. Used for cell permeabilization in immunostaining assays
Upright microscope Olympus BX51VI Microscope for electrophysiological recording equipped with CoolSnap Myo camera 
Y-27632  (ROCK inhibitor) Enzo Life Sciences ALX-270-333-M005  Cell-permeable selective inhibitor of Rho-associated, coiled-coil containing protein kinase (ROCK). Increases iPSC survival
μ-Slide 8 Well  Ibidi 80826 Support for high–end microscopic analysis of fixed cells

References

  1. Dimos, J. T., et al. Induced Pluripotent Stem Cells Generated from Patients with ALS Can Be Differentiated into Motor Neurons. Science (New York, NY). 321 (5893), 1218 (2008).
  2. Ebert, A. D., et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 457 (7227), 277-280 (2009).
  3. Lenzi, J., et al. ALS mutant FUS proteins are recruited into stress granules in induced Pluripotent Stem Cells (iPSCs) derived motoneurons. Disease models & mechanisms. 8 (7), 755-766 (2015).
  4. Wijesekera, L. C., Leigh, P. N. Amyotrophic lateral sclerosis. Orphanet journal of rare diseases. 4 (3), 1-22 (2009).
  5. Yan, J., et al. Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology. 75 (9), 807-814 (2010).
  6. Boulting, G. L., et al. A functionally characterized test set of human induced pluripotent stem cells. Nature biotechnology. 29 (3), 279-286 (2011).
  7. Amoroso, M. W., et al. Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. The Journal of neuroscience: the official journal of the Society for Neuroscience. 33 (2), 574-586 (2013).
  8. Maury, Y., et al. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nature biotechnology. 33 (1), 89-96 (2015).
  9. Allodi, I., et al. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS. Scientific reports. 6, 25960 (2016).
  10. Kaplan, A., et al. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron. 81 (2), 333-348 (2014).
  11. Mazzoni, E. O., et al. Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity. Nature neuroscience. 16 (9), 1219-1227 (2013).
  12. De Santis, R., Garone, M. G., Pagani, F., de Turris, V., Di Angelantonio, S., Rosa, A. Direct conversion of human pluripotent stem cells into cranial motor neurons using a piggyBac vector. Stem Cell Research. 29, 189-196 (2018).
  13. Yusa, K., Zhou, L., Li, M. A., Bradley, A., Craig, N. L. A hyperactive piggyBac transposase for mammalian applications. Proceedings of the National Academy of Sciences of the United States of America. 108 (4), 1531-1536 (2011).
  14. Sances, S., et al. Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nature Neuroscience. 16 (4), 542-553 (2016).
  15. Miller, J. D., et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell stem cell. 13 (6), 691-705 (2013).
  16. Lenzi, J., et al. Differentiation of control and ALS mutant human iPSCs into functional skeletal muscle cells, a tool for the study of neuromuscolar diseases. Stem Cell Research. 17 (1), 140-147 (2016).
  17. Zhang, Y., et al. Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells. Neuron. 78 (5), 785-798 (2013).
  18. Theka, I., et al. Rapid generation of functional dopaminergic neurons from human induced pluripotent stem cells through a single-step procedure using cell lineage transcription factors. Stem cells translational medicine. 2 (6), 473-479 (2013).
  19. Pawlowski, M., et al. Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and Oligodendrocytes. Stem Cell Reports. 8 (4), 803-812 (2017).
  20. Li, X., et al. Fast Generation of Functional Subtype Astrocytes from Human Pluripotent Stem Cells. Stem Cell Reports. 11 (4), 998-1008 (2018).
  21. Nehme, R., et al. Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission. Cell reports. 23 (8), 2509-2523 (2018).
check_url/fr/59321?article_type=t

Play Video

Citer Cet Article
Garone, M. G., de Turris, V., Soloperto, A., Brighi, C., De Santis, R., Pagani, F., Di Angelantonio, S., Rosa, A. Conversion of Human Induced Pluripotent Stem Cells (iPSCs) into Functional Spinal and Cranial Motor Neurons Using PiggyBac Vectors. J. Vis. Exp. (147), e59321, doi:10.3791/59321 (2019).

View Video