Summary

用于转化免疫肿瘤学(I-O)研究的人类外周血单核细胞(PBMC)的人工化异种移植模型

Published: August 15, 2019
doi:

Summary

我们描述了人类外周血单核细胞(PBMC)–基于人体的异种移植小鼠模型,用于转化免疫肿瘤学研究。该协议可作为建立和描述类似I-O治疗评估模型的一般准则。

Abstract

近年来免疫肿瘤学(I-O)疗法的发现和发展是癌症治疗的一个里程碑。然而,治疗挑战依然存在。健壮且与疾病相关的动物模型是继续临床前研究和开发的重要资源,以解决一系列额外的免疫检查点。在这里,我们描述了人类外周血单核细胞(PBMC)-基于人性化异种移植模型。BGB-A317(Tislelizumab)是一种在晚期临床开发中研究性的人性化抗PD-1抗体,作为讨论平台设置、模型特征和药物疗效评估的例子。这些人性化的小鼠支持大多数经过测试的人类肿瘤的生长,从而允许在人类免疫和人类癌症的背景下评估I-O疗法。一旦建立,我们的模型是比较时间和成本效益,通常产生高度可重复的结果。我们建议本文中概述的协议可以作为建立小鼠模型的一般指南,该模型与人类PBMC和肿瘤重组为I-O研究。

Introduction

免疫肿瘤学(I-O)是一个迅速扩大的癌症治疗领域。研究人员最近开始意识到调节免疫系统作用对肿瘤的攻击作用。免疫检查点封锁已经证明了各种癌症类型的令人鼓舞的活动,包括黑色素瘤,肾细胞癌,头和颈部,肺,膀胱和前列腺癌1,2。与直接杀死癌细胞的目标疗法相反,I-O疗法能增强人体免疫系统攻击肿瘤3。

迄今为止,已经建立了许多相关的I-O动物模型。这些包括:1)小鼠肿瘤细胞系或肿瘤同源性小鼠;2)来自基因工程小鼠(GEM)或致癌物的自发性肿瘤;3) 功能性鼠免疫系统中与人类药物靶点敲的嵌合的GEM;4)用人类癌细胞或患者衍生异种移植物(PDXs)移植的具有重组人体免疫力的小鼠。每种模型都有明显的优势和局限性,这些优点和局限性已在其他地方广泛描述和审查。

复生人类免疫免疫缺陷小鼠作为转化I-O研究的临床相关方法,已日益受到重视。这通常是通过成人免疫细胞(例如,外周血单核细胞 (PMBC))5、6 或 2) 从脐带血或胎儿的造血干细胞 (HSC) 的移植来实现的肝脏7,8。这些人性化的小鼠可以支持人类肿瘤的生长,从而允许在人类免疫和人类癌症的背景下评估I-O疗法。尽管这些优点,但人性化小鼠在I-O研究中的应用通常受到一些顾虑的阻碍,例如模型开发时间长,成本相当高。

在这里,我们描述了一个基于人类PBMC的模型,可以广泛应用于翻译I-O研究。该模型在疗效研究中具有较好的时间和成本效益,具有很高的可重复性。它已被内部用于评估目前正在临床前和临床开发中的几种I-O疗法。BGB-A317(Tislelizumab),一种研究性的人性化抗PD-1抗体9,作为例子,讨论模型开发、表征以及抗肿瘤疗效分析的可能应用。

Protocol

在涉及人类参与者的研究中进行的所有程序都符合BeiGene和/或国家研究委员会的道德标准,以及1964年《赫尔辛基宣言》及其后来的修正或类似的道德标准。研究中的所有个人参与者都得到了知情同意。在涉及动物的研究中执行的所有程序都得到北金内部审查委员会的批准。该协议已针对人体化NOD/SCID小鼠的BGB-A317(Tislelizumab)的评估进行了专门调整。 1. 建立基于人PBMC的模型 </p…

Representative Results

按照此处介绍的程序,成功建立了基于 PBMC 的人性化异种移植模型。总之,在CP和DS治疗后,通过对嗜中性粒细胞和单细胞种群的流细胞测定分析,确定了NOD/SCID小鼠的CP骨髓消融效应(图1)。100毫克/千克CP加125毫克/千克DS被确定为最佳剂量,并在后来的研究中使用,因为该方案可导致嗜中性粒细胞和单核细胞的最大耗竭,而不会对小鼠造成严重毒性。其次,进行了人体PBMC和肿瘤移植。IHC?…

Discussion

近年来,我们对癌症发展和进展的认识有了显著的进步,重点是全面了解肿瘤细胞及其相关频闪。利用宿主免疫机制可以引起对癌细胞的更大影响,这是一种有前途的治疗策略。具有完整小鼠免疫系统的鼠模型,如合成和GEM模型,已被广泛用于研究检查点介导的免疫。使用这些模型的功效评估主要取决于代理抗小鼠靶抗体13,14。然而,人类和鼠的免疫系统之间的…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢实验室成员进行有益的讨论。这项工作得到了北京市科委生物医学和生命科学创新与培养研究项目的一部分支持。Z151100003915070(项目”新免疫肿瘤抗肿瘤药物BGB-A317的临床前研究”),也部分得到公司内部临床前研究资金的支持。

Materials

PBMC separation /cell culture
Histopaque-1077 Sigma 10771 Cell isolation
DMEM Corning 10-013-CVR Cell culture
DPBS Corning 21-031-CVR Cell culture
FBS Corning 35-076-CV Cell culture
Penicillin-Streptomycin, Liquid Gibco 15140-163 Cell culture
Trypsin-EDTA (0.25%), phenol red Gibco 25200-114 Cell culture
Matrigel Corning 356237 CDX inoculation
FACS analysis
Deoxyribonuclease I from bovine pancreas Sigma DN25 Sample preparation
Collagenase Type I Sigma C0130 Sample preparation
Anti-mouse/human CD11b (M1/70) antibody BioLegend 101206 FACS
Anti-mouse Ly-6C (HK1.4) antibody BioLegend 128008 FACS
Anti-mouse Ly-6G (1A8) antibody BioLegend 127614 FACS
Anti-human CD8 (OKT8) antibody Sungene Biotech H10082-11H FACS
Anti-human CD279 (MIH4) antibody eBioscience 12-9969-42 FACS
Anti-human CD3 (HIT3a) antibody 4A Biotech FACS
Guava easyCyte 8HT Benchtop Flow Cytometer Millipore 0500-4008 FACS
Tumor/PDX implantation /dosing / measurement
Cyclophosphamide J&K Cat#419656, CAS#6055-19-2 In vivo efficacy
Disulfiram J&K Cat#591123, CAS#97-77-8 In vivo efficacy
Syringe BD 300841 CDX inoculation
Hypodermic needles (14G) Shanghai SA Mediciall & Plastic Instruments Co., Ltd. 0.7*32 TW SB PDX inoculation
Vernier Caliper (MarCal) Mahr 16ER Tumor measurement
IVC individual ventilated cages Lingyunboji Ltd. IVC-128 Animal facility
IHC
Leica ASP200 Vacuum tissue processor Leica ASP200 IHC
Leica RM2235 Manual Rotary Microtome for Routine Sectioning Leica RM2235 IHC
Leica EG1150 H Heated Paraffin Embedding Module Leica EG1150 H IHC
Ariol-Clinical IHC and FISH Scanner Leica Ariol IHC
Anti-human CD8 (EP334) antibody ZSGB-Bio ZA-0508 IHC
Anti-human PD1 [NAT105] antibody Abcam ab52587 IHC
Anti-human PD-L1 (E1L3N) antibody Cell Signaling Technology 13684S IHC
Polink-2 plus Polymer HRP Detection System ZSGB-Bio PV-9001/9002 IHC

References

  1. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer. 12 (4), 252-264 (2012).
  2. Postow, M. A., Callahan, M. K., Wolchok, J. D. Immune Checkpoint Blockade in Cancer Therapy. Journal of Clinical Oncology. 33 (17), 1974-1982 (2015).
  3. Li, Z., Kang, Y. Emerging therapeutic targets in metastatic progression: A focus on breast cancer. Pharmacology & Therapeutics. 161, 79-96 (2016).
  4. Li, Q. X., Feuer, G., Ouyang, X., An, X. Experimental animal modeling for immuno-oncology. Pharmacology & Therapeutics. 173, 34-46 (2017).
  5. Fisher, T. S., et al. Targeting of 4-1BB by monoclonal antibody PF-05082566 enhances T-cell function and promotes anti-tumor activity. Cancer Immunology, Immunotherapy. 61 (10), 1721-1733 (2012).
  6. McCormack, E., et al. Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors. Cancer Immunology, Immunotherapy. 62 (4), 773-785 (2013).
  7. Rongvaux, A., et al. Human hemato-lymphoid system mice: current use and future potential for medicine. Annual Review of Immunology. 31, 635-674 (2013).
  8. Matsumura, T., et al. Functional CD5+ B cells develop predominantly in the spleen of NOD/SCID/gammac(null) (NOG) mice transplanted either with human umbilical cord blood, bone marrow, or mobilized peripheral blood CD34+ cells. Experimental Hematology. 31 (9), 789-797 (2003).
  9. Zhang, T., et al. The binding of an anti-PD-1 antibody to FcgammaRIota has a profound impact on its biological functions. Cancer Immunology, Immunotherapy. 67 (7), 1079-1090 (2018).
  10. Gamelli, R. L., Ershler, W. B., Hacker, M. P., Foster, R. S. The effect of disulfiram on cyclophosphamide-mediated myeloid toxicity. Cancer Chemotherapy and Pharmacology. 16 (2), 153-155 (1986).
  11. Dunay, I. R., Fuchs, A., Sibley, L. D. Inflammatory monocytes but not neutrophils are necessary to control infection with Toxoplasma gondii in mice. Infection and Immunity. 78 (4), 1564-1570 (2010).
  12. Ghasemlou, N., Chiu, I. M., Julien, J. P., Woolf, C. J. CD11b+Ly6G- myeloid cells mediate mechanical inflammatory pain hypersensitivity. Proceedings of the National Academy of Sciences of the United States of America. 112 (49), 6808-6817 (2015).
  13. Takao, K., Miyakawa, T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proceedings of the National Academy of Sciences of the United States of America. 112 (4), 1167-1172 (2015).
  14. Payne, K. J., Crooks, G. M. Immune-cell lineage commitment: translation from mice to humans. Immunity. 26 (6), 674-677 (2007).
  15. Mestas, J., Hughes, C. C. Of mice and not men: differences between mouse and human immunology. Journal of Immunology. 172 (5), 2731-2738 (2004).
  16. von Herrath, M. G., Nepom, G. T. Lost in translation: barriers to implementing clinical immunotherapeutics for autoimmunity. Journal of Experimental Medicine. 202 (9), 1159-1162 (2005).
  17. Mahdi, B. M. A glow of HLA typing in organ transplantation. Clinical and Translational Medicine. 2 (1), 6 (2013).
  18. Shultz, L. D., Brehm, M. A., Garcia-Martinez, J. V., Greiner, D. L. Humanized mice for immune system investigation: progress, promise and challenges. Nature Reviews Immunolog. 12 (11), 786-798 (2012).
  19. Brehm, M. A., Shultz, L. D., Luban, J., Greiner, D. L. Overcoming current limitations in humanized mouse research. Journal of Infectious Diseases. 208, 125-130 (2013).
  20. Walsh, N. C., et al. Humanized Mouse Models of Clinical Disease. Annual Review of Pathology. 12, 187-215 (2017).
  21. Shultz, L. D., Ishikawa, F., Greiner, D. L. Humanized mice in translational biomedical research. Nature Reviews Immunolog. 7 (2), 118-130 (2007).
  22. Brehm, M. A., et al. NOD-scid IL2rgnull (NSG) mice deficient in murine MHC Class I and Class II expression support engraftment of functional human T cells in the absence of acute xenogeneic GVHD following injection of PBMC. The Journal of Immunology. 200, 57 (2018).
  23. King, M., et al. A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clinical Immunology. 126 (3), 303-314 (2008).
  24. Ito, M., et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 100 (9), 3175-3182 (2002).
  25. Shultz, L. D., et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. Journal of Immunology. 174 (10), 6477-6489 (2005).
  26. Sasaki, E., et al. Development of a preclinical humanized mouse model to evaluate acute toxicity of an influenza vaccine. Oncotarget. 9 (40), 25751-25763 (2018).
  27. Tobin, L. M., Healy, M. E., English, K., Mahon, B. P. Human mesenchymal stem cells suppress donor CD4(+) T cell proliferation and reduce pathology in a humanized mouse model of acute graft-versus-host disease. Clinical and Experimental Immunology. 172 (2), 333-348 (2013).
check_url/fr/59679?article_type=t

Play Video

Citer Cet Article
Li, Z., Yang, X., Zhang, Y., Yang, X., Cui, X., Zhang, Y., Gong, W., Bai, H., Liu, N., Tang, Z., Guo, M., Li, K., Zhang, T., Wang, L., Song, X. A Human Peripheral Blood Mononuclear Cell (PBMC) Engrafted Humanized Xenograft Model for Translational Immuno-oncology (I-O) Research. J. Vis. Exp. (150), e59679, doi:10.3791/59679 (2019).

View Video