Summary

色质域新形成研究方法

Published: August 23, 2019
doi:

Summary

该方法旨在跟踪细胞系中PRC2介导染色质域的形成,该方法可适用于许多其他系统。

Abstract

染色质域的组织和结构是单个细胞谱系所独有的。他们的管制不当可能导致细胞身份和/或疾病的损失。尽管作出了巨大努力,我们对染色质域的形成和传播的理解仍然有限。色质领域已在稳定状态条件下进行了研究,这不利于在建立过程中跟踪初始事件。在这里,我们提出了一种方法,以诱导地重建染色质域,并遵循其重新形成作为时间的函数。虽然,首先适用于PRC2介导的压制染色质域形成的情况,它可以很容易地适应其他染色质领域。该方法的修改和/或与基因组学和成像技术的结合,将为详细研究染色质域的建立提供宝贵的工具。我们相信,这种方法将彻底改变我们对染色质域如何形成和相互作用的理解。

Introduction

真核基因组组织性很强,染色质可及性的变化直接控制着基因转录1。基因组包含不同类型的染色质域,与转录活动和复制时间2,3相关。这些染色质域的大小范围从几个千碱(kb)到超过100kb,其特点是在独特的组蛋白修饰4中富集。核心问题是:这些域是如何形成的,如何传播?

一个最具特征的染色质域是通过 Polycomb 压制性复合体 2 (PRC2) 的活动培育的。PRC2 是一种多亚单位复合体,由蛋白质5、6 的 Polycomb 组 (PcG) 的子集组成,并催化组蛋白 H3 (H3K27me1/me2/me3)7、8 、 910.H3K27me2/me3与抑制性染色质状态有关,但H3K27me1的功能不清楚6,11。PRC2的核心部件之一,胚胎外阴体发育(EED),通过其芳香笼与PRC2催化的最终产物H3K27me3结合,这一特性导致PRC212,13的异体刺激。PRC2酶活性对于在发育过程中保持细胞特性至关重要,因为某些发育基因的不当表达,即特定血统的禁忌,将有害于5,6.因此,解开PRC2促进哺乳动物形成抑制性染色质域的机制,对于理解细胞特性至关重要。

所有过去旨在研究染色质域形成的实验系统,包括PRC2介导染色质域,都是在稳定状态条件下进行的,这些系统无法跟踪染色质域形成在细胞。在这里,我们提出了一个详细的协议,以生成一个诱导的细胞系统,监测染色质域的初始招募和传播。具体来说,我们专注于跟踪由H3K27me2/3组成的PRC2介导的压质染色质域的形成。该系统可以捕获染色质域形成的机械细节,可以调整以纳入其他染色质域,如广泛研究的域包括H2AK119ub或H3K9me。结合基因组学和成像技术,这种方法有可能成功地解决染色质生物学中的各种关键问题。

Protocol

产生诱导式EED救援mESC 1. 细胞培养 使用无进纸的C57BL/6小鼠胚胎干细胞(mESCs),具有稳定集成的CreERT2转基因,在给给4-羟基塔莫西芬(4-OHT)13时可转移到细胞核。 在传统的ESC介质14、15中生长mESC,辅以1000U/mL LIF、1μM ERK抑制剂PD0325901和3μM GSK3抑制剂CHIR99021。对于传统的ESC介质,使用含有…

Representative Results

有条件救助制度的一般方案图1显示了有条件地用WT或笼突变体(Y365A)EED从内源EED位点表达的EED KO细胞的靶向方案。在敲除对稳定性和酶活性至关重要的PRC2核心子单元EED后,引入EED外延9之后的内联磁带(图1)。该盒体由EED的剩余3’cDNA序列组成,与内源性基因序列相反。 盒内由异体倒置的 loxP 位点(lox66 和 lox71)18。?…

Discussion

在给定染色质域形成期间,理解机械细节的有力方法是首先破坏该域,然后跟踪其在细胞内正在进行的重建。在重建过程中,可以随时暂停该过程,以详细分析正在进行的事件。以前关于染色质域的研究无法解决在稳定状态条件下执行的事件(例如,比较野生型和基因挖空)。在这里,我们概述了一个系统,以评估染色质域的动态形成,这突出说明了在细胞中招募和传播PRC2介导的压制性域。

<…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢L.Vales博士、D.Ozata博士和H.Mou博士对手稿的修订。D.R. 实验室由霍华德·休斯医学研究所和国家卫生研究院(R01CA199652和R01NS100897)提供支持。

Materials

(Z)-4-Hydroxytamoxifen (5 mg) Sigma H7904-5MG For induction of EED expression
16% Paraformaldehyde aqueous solution (10×10 ml) Electron Microscopy Sciences 15710 For immunofluorescence
2-mercaptoethanol LifeTechnologies 21985-023 For mESCs culture
2% Gelatin Solution Sigma G1393-100ml For mESCs culture
Accutase 500 ML Innovative Cell Tech/FISHER AT 104-500 For mESCs culture
Alexa Fluor 594 AffiniPure Donkey Anti-Rabbit IgG (H+L) Jackson immunoresaerch 711-585-152 For immunofluorescence
Aqua-Mount Mounting Medium FISHER/VWR 41799-008 For immunofluorescence
CHAMBER SLD TC PRMA 8-CHM 16 PK Fisher Sci 177445PK For immunofluorescence
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) – 10 mg Life Tech D1306 For immunofluorescence
ERK inhibitor, PD0325901 Stemgent 04-0006 For mESCs culture
ESGRO Recombinant Mouse LIF Protein Millipore/Fisher ESG1107 For mESCs culture
FBS Stem Cell Qualified Atlanta S10250 For mESCs culture
Gibson Assembly Master Mix NEB E2611L For Donor template cloning
GSK3 inhibitor, CHIR99021 Stemgent 04-0004 For mESCs culture
H3K27me2 (D18C8) rabbit mAB Cell Signaling 9728S Antibody for ChIP-seq
H3K27me3 Cell Signaling 9733S Antibody for ChIP-seq
Histone H2Av antibody (pAb) Active motif 39715 Spike-in control for ChIP-seq
Knockout DMEM Invitrogen 10829-018 For mESCs culture
L-glutamine Sigma G7513 For mESCs culture
Lipofectamine 2000 LifeTech 11668019 For transfection
MangoTaq DNA Polymerase Bioline BIO-21079 For Genotyping PCR
Normal donkey serum (10 mL) Jackson ImmunoResearch 017-000-121 For immunofluorescence
Penicillin-Streptomycin Sigma/Roche P0781 For mESCs culture
pSpCas9(BB)-2A-GFP (PX458) Addgene 48138 For gRNA cloning
QuickExtract DNA Extraction Solution Lucigen QE0905T For Genotyping PCR
Triton X-100 Sigma T8787-250ML
Zero Blunt PCR Cloning Kit Thermo Fisher K270020 For Donor template cloning
Primers/gBlocks
EED-KO-gRNA-1 Sequence: ctctggctactgtcaactag. gRNAs pairs to knockout EED in C57BL/6 ESCs for i-WT-r and i-MT-r systems.
EED-KO-gRNA-2 Sequence: TAGGCTATGACGCAGCTCAG. gRNAs pairs to knockout EED in C57BL/6 ESCs for i-WT-r and i-MT-r systems.
EED-gRNA-inducible Sequence: atggcaccccgaaattagaa. gRNA and Donor to generate i-WT-r system in the EED-KO background.
i-WT-r Donor https://benchling.com/s/seq-l2LLlWNEnLrfGXcbdCxI. gRNA and Donor to generate i-WT-r system in the EED-KO background.
EED-gRNA-inducible Sequence: atggcaccccgaaattagaa. gRNA and Donor to generate i-WT-r system in the EED-KO background.
i-MT-r Donor https://benchling.com/s/seq-n8eiZCB2XAkOuzzpv6qM. gRNA and Donor to generate i-MT-r system in the EED-KO background.
Genotyping Primers
Gnt-EED-KO-FW-1 Sequence: ctgtaggctgccatctgtga. Wild type allele will produce a product of 1.9 kb. Knockout allele will produce a product of 200 bp.
Gnt-EED-KO-REV-1 Sequence: agccagggctacacagagaa. Wild type allele will produce a product of 1.9 kb. Knockout allele will produce a product of 200 bp.
Inducible_Genotype-FW-1 Sequence: tgcagtgaaacaaatttggaa. When the casette is inserted, the primers will produce 1863 bp. The wild type allele will produce a product of ~200 bp.
Inducible_Genotype-REV-1 Sequence: gagaggggtggcactgtaaa. When the casette is inserted, the primers will produce 1863 bp. The wild type allele will produce a product of ~200 bp.
Inducible_Genotype-FW-2 Sequence: ccccctctttctccttttct. When the casette is inserted, the primers will produce 3200 bp. The wild type allele will produce a product of 1560 bp.
Inducible_Genotype-REV-2 Sequence: atgcctgggtgaatgaaaaa. When the casette is inserted, the primers will produce 3200 bp. The wild type allele will produce a product of 1560 bp.

References

  1. Bonev, B., Cavalli, G. Organization and function of the 3D genome. Nature Reviews Genetics. 17 (11), 661-678 (2016).
  2. Dixon, J. R., et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 485 (7398), 376-380 (2012).
  3. Pope, B. D., et al. Topologically associating domains are stable units of replication-timing regulation. Nature. 515 (7527), 402-405 (2014).
  4. Carelli, F. N., Sharma, G., Broad Ahringer, J. Chromatin Domains: An Important Facet of Genome Regulation. Bioessays. 39 (12), (2017).
  5. Margueron, R., Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature. 469 (7330), 343-349 (2011).
  6. Holoch, D., Margueron, R. Mechanisms Regulating PRC2 Recruitment and Enzymatic Activity. Trends in Biochemical Sciences. 42 (7), 531-542 (2017).
  7. Cao, R., et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science. 298 (5595), 1039-1043 (2002).
  8. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of zeste protein. Genes and Development. 16 (22), 2893-2905 (2002).
  9. Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., Pirrotta, V. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell. 111 (2), 185-196 (2002).
  10. Müller, J., et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell. 111 (2), 197-208 (2002).
  11. Ferrari, K. J., et al. Polycomb-Dependent H3K27me1 and H3K27me2 Regulate Active Transcription and Enhancer Fidelity. Molecular Cell. 53 (1), 49-62 (2014).
  12. Margueron, R., et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature. 461 (7265), 762-767 (2009).
  13. Oksuz, O., et al. Capturing the Onset of PRC2-Mediated Repressive Domain Formation. Molecular cell. 70 (6), 1149-1162 (2018).
  14. Tee, W. W., Shen, S. S., Oksuz, O., Narendra, V., Reinberg, D. Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell. 156 (4), 678-690 (2014).
  15. Oksuz, O., Tee, W. W. Probing chromatin modifications in response to ERK signaling. Methods in Molecular Biology. 1487, 289-301 (2017).
  16. Benchling for Academics. Benchling Available from: https://benchling.com (2018)
  17. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 8 (11), 2281-2308 (2013).
  18. Zhang, Z., Lutz, B. Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein. Nucleic acids research. 30 (17), 90 (2002).
  19. Orlando, D. A., et al. Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell reports. 9 (3), 1163-1170 (2014).
  20. Langmead, B., Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods. 9 (4), 357-359 (2012).
  21. Descostes, N. ChIPSeqSpike: ChIP-Seq data scaling according to spike-in control. R package version 1.2.1. , (2019).
  22. Quinlan, A. R., Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26 (6), 841-842 (2010).
  23. Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S., Karolchik, D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics. 26 (17), 2204-2207 (2010).
  24. . UCSC Genome Browser Home Available from: https://genome.ucsc.edu (2019)
  25. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  26. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T., Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nature Methods. 6 (12), 917-922 (2009).
  27. Banaszynski, L. A., Chen, L., Maynard-Smith, L. A., Ooi, A. G. L., Wandless, T. J. A Rapid, Reversible, and Tunable Method to Regulate Protein Function in Living Cells Using Synthetic Small Molecules. Cell. 126 (5), 995-1004 (2006).
  28. Højfeldt, J. W., et al. Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nature Structural & Molecular Biology. 25 (3), 225-232 (2018).
check_url/fr/60039?article_type=t

Play Video

Citer Cet Article
Oksuz, O., Reinberg, D. A Method to Study de novo Formation of Chromatin Domains. J. Vis. Exp. (150), e60039, doi:10.3791/60039 (2019).

View Video