Summary

具有体外转录mRNA的初级巨噬细胞的高效转染

Published: November 09, 2019
doi:

Summary

巨噬细胞,特别是原发性巨噬细胞,由于它们专门检测非自源分子,因此很难转染。我们描述了一种协议,它允许使用从DNA模板(如质粒)生成的mRNA对原性巨噬细胞进行高效的转染。

Abstract

巨噬细胞是专门检测非自源分子的噬菌体。为此,他们配备了大量模式识别受体(PRRs)。不幸的是,这也使得巨噬细胞特别难以转染,因为转染试剂和转染的核酸经常被PR识别为非自体。因此,转染通常会导致巨噬细胞活化和转染核酸的降解,甚至导致巨噬细胞的自杀。在这里,我们描述了一个协议,它允许高效转染鼠原性巨噬细胞,如围肠巨噬细胞(PM)和骨髓衍生巨噬细胞(BMDM),在体外转录从DNA模板(如质粒)的mRNA。通过这种简单的方案,在未观察到细胞毒性或免疫原性的情况下,PM和BMDM的转染率约为50-65%,BMDM约为85%。我们详细描述了从DNA结构(如质粒和转染过程)转染的mRNA的生成。

Introduction

巨噬细胞是噬菌体,专门检测、摄取和降解微生物、凋亡细胞和细胞碎片。此外,它们通过分泌细胞因子和化学因子,以及向T细胞和B细胞提供抗原,帮助协调免疫反应。巨噬细胞在许多其他过程中也起着重要作用,如伤口愈合、动脉粥样硬化、肿瘤发生和肥胖。

为了能够检测非自分子,如病原体相关的分子模式(PAMPs)和不合时宜的分子,如损伤相关分子模式(DAMPs),巨噬细胞配备了大量模式识别受体(PRR)1。不幸的是,这也使得巨噬细胞特别难以转染2作为转染试剂3和转染核酸4,5,6,7经常被PR识别为非自体。因此,使用化学或物理方法的巨噬细胞转染通常会导致大噬细胞活化和转染核酸的降解,甚至导致巨噬细胞通过热膜病自杀,这是一种在识别细胞环管PAMPs/DAMPs(如DNA或外来RNA9)后触发的细胞细胞死亡。使用腺病毒或扁病毒等病毒作为载体的巨噬细胞的生物转染通常效率更高,但构建这种病毒载体却非常耗时,需要生物安全2级设备10、11。

因此,虽然巨噬细胞是深入研究的主题,但由于分子生物学最重要的工具之一,核酸构造的转染,用于外源性表达,因此在分子水平上对其功能的分析受到了阻碍。蛋白质,是很难适用的。这经常迫使研究人员使用类似巨噬细胞的细胞系,而不是真正的巨噬细胞。核酸构造转染的应用包括突变或标记蛋白的表达、特定蛋白质的过度表达、在各自敲除背景中的蛋白质重新表达以及来自其他物种的蛋白质的表达(例如。,Cre 重组酶或指导 RNA 和 Cas9 用于靶向基因敲除)。

在这里,我们描述了一个协议,允许高效转染(通常难以转染)原体噬菌体,即鼠围管巨噬细胞(PM)和骨髓衍生巨噬细胞(BMDM)与MRNA产生的DNA模板,如质粒。重要的是,使用该协议产生的体外转录mRNA含有自然产生的修饰核苷5-甲基-CTP和伪UTP,降低免疫原性,增强稳定性4,6,7,12,13。此外,在体外转录的mRNA的5’端被南极磷酸酶去磷化,以防止RIG-I复合体14、15的识别。这最大限度地减少了体外转录mRNA的先天免疫识别。通过我们易于执行的协议,转染率在50-65%(围脑巨噬细胞(PM))和85%(BMDM)之间,而重要的是,没有观察到细胞毒性或免疫原性。我们详细描述 (i) 如何从DNA结构(如质粒)和 (ii) 转染程序本身生成用于转染的免疫沉默的 mRNA。

Protocol

根据德国《动物保护法》,根据科隆大学伦理委员会对小鼠进行巨噬菌体分离。 注:戴上手套执行所有步骤。在层流罩下执行所有转染步骤,以防止细胞受到污染。在使用 mRNA 之前,使用 70% 乙醇和/或 RNAe 降解表面活性剂(材料表)清洁所有仪器,如移液器和每个表面。确保所有反应管无RNA酶和无菌。只使用无菌的无RNA酶水进行稀释。专门使用带过?…

Representative Results

我们已经成功地使用该协议为FLAG标记的NEMO和IKK+变体生成mRNA编码,用于转染原巨噬细胞16。FLAG 标记野生型 (NEMOWT) 和 C54/347A 突变 NEMO (NEMOC54/374A)(见材料表)的质粒编码已经包含方向正确的 T7 前电机 (图 1A)。因此,我们只需要线性化质粒,以生成体外转录的DNA模板。为此,用5μL Xb…

Discussion

在这里,我们提出了一个协议,用于使用体外转录mRNA对通常难以转染的通常难以转染的初级巨噬细胞进行高效转染。重要的是,使用该协议的巨噬细胞转染不会诱发细胞死亡或激活亲炎信号,表明转染试剂和转染的mRNA均不被识别为非自体。

mRNA的质量对于使用该协议成功转染巨噬细胞至关重要。因此,应非常小心,mRNA不会与RNA接触(例如,通过受污染的缓冲液或小瓶)。如?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了德国福森斯金舍夫(SFB 670)的支持。

Materials

5-methyl-CTP (100 mM) Jena Biosience NU-1138S stored at -20 °C
Antarctic phosphatase New England BioLabs M0289 stored at -20 °C
Antarctic phosphatase reaction buffer (10X) New England BioLabs B0289 stored at -20 °C
anti-NEMO/IKKγ antibody Invitrogen MA1-41046 stored at -20 °C
anti-β-actin antibody Sigma-Aldrich A2228 stored at -20 °C
Petri dishes 92,16 mm with cams Sarstedt 821,473 stored at RT
CD11b Microbeads mouse and human Miltenyi Biotec 130-049-601 stored at 4 °C
Cre recombinase + T7-Promotor forward primer Sigma-Aldrich 5′-GAAATTAATACGACTCACTATA
GGGGCAGCCGCCACCATGTCC
AATTTACTGACCGTAC-3´, stored at -20 °C
Cre recombinase + T7-Promotor reverse primer Sigma-Aldrich 5′-CTAATCGCCATCTTCCAGCAGG
C-3′, stored at -20 °C
DNA purification kit: QIAquick PCR purification Kit Qiagen 28104 stored at RT
eGFP + T7-Promotor forward primer Sigma-Aldrich 5´-GAAATTAATACGACTCACTATA
GGGATCCATCGCCACCATGGTG
AGCAAGG-3´, stored at -20 °C
eGFP + T7-Promotor reverse primer Sigma-Aldrich 5´-TGGTATGGCTGATTA
TGATCTAGAGTCG-3´, stored at -20 °C
Fast Digest buffer (10X) Thermo Scientific B64 stored at -20 °C
FastDigest XbaI Thermo Scientific FD0684 stored at -20 °C
high-fidelity polymerase with proofreading: Q5 High-Fidelity DNA-Polymerase New England Biolabs Inc M0491S stored at -20 °C
IKKβ + T7-Promotor forward primer Sigma-Aldrich 5′-GAAATTAATACGACTCACTATA
GGGTTGATCTACCATGGACTACA
AAGACG-3′, stored at -20 °C
IKKβ + T7-Promotor reverse primer Sigma-Aldrich 5′-GAGGAAGCGAGAGCT-CCATCTG-3′, stored at -20 °C
in vitro mRNA transcription kit: HiScribe T7 ARCA mRNA kit (with polyA tailing) New England BioLabs E2060 stored at -20 °C
LS Columns Miltenyi Biotec 130-042-401 stored at RT
MACS MultiStand Miltenyi Biotec 130-042-303 stored at RT
mRNA transfection buffer and reagent: jetMESSENGER Polyplus transfection 409-0001DE stored at 4 °C
Mutant IKKβ IKK-2S177/181E plasmid Addgene 11105 stored at -20 °C
Mutant NEMOC54/347A plasmid Addgene 27268 stored at -20 °C
pEGFP-N3 plasmid Addgene 62043 stored at -20 °C
poly(I:C) Calbiochem 528906 stored at -20 °C
pPGK-Cre plasmid F. T. Wunderlich, H. Wildner, K. Rajewsky, F. Edenhofer, New variants of inducible Cre recombinase: A novel mutant of Cre-PR fusion protein exhibits enhanced sensitivity and an expanded range of inducibility. Nucleic Acids Res. 29, 47e (2001). stored at -20 °C
pseudo-UTP (100 mM) Jena Biosience NU-1139S stored at -20 °C
QuadroMACS Separator Miltenyi Biotec 130-090-976 stored at RT
Rat-anti-mouse CD11b antibody, APC-conjugated BioLegend 101212 stored at 4 °C
Rat-anti-mouse F4/80 antibody, PE-conjugated eBioscience 12-4801-82 stored at 4 °C
recombinant M-CSF Peprotech 315-02 stored at -20 °C
RNA purification kit: MEGAclear transcription clean-up kit ThermoFisher Scientific AM1908 stored at 4 °C
RNAse-degrading surfactant: RnaseZAP Sigma-Aldrich R2020 stored at RT
ultrapure LPS from E.coli O111:B4 Invivogen stored at -20 °C
Wild type IKKβ plasmid Addgene 11103 stored at -20 °C
Wild type NEMO plasmid Addgene 27268 stored at -20 °C

References

  1. Ley, K., Pramod, A. B., Croft, M., Ravichandran, K. S., Ting, J. P. How Mouse Macrophages Sense What Is Going On. Frontiers in Immunology. 7 (204), (2016).
  2. Zhang, X., Edwards, J. P., Mosser, D. M. The expression of exogenous genes in macrophages: obstacles and opportunities. Methods in Molecular Biolology. 531, 123-143 (2009).
  3. Guo, X., et al. Transfection reagent Lipofectamine triggers type I interferon signaling activation in macrophages. Immunology and cell biology. 97 (1), 92-96 (2019).
  4. Kariko, K., Weissman, D. Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development. Current Opinion in Drug Discovery and Development. 10 (5), 523-532 (2007).
  5. Van De Parre, T. J., Martinet, W., Schrijvers, D. M., Herman, A. G., De Meyer, G. R. mRNA but not plasmid DNA is efficiently transfected in murine J774A.1 macrophages. Biochemical and biophysical research communications. 327 (1), 356-360 (2005).
  6. Uchida, S., Kataoka, K., Itaka, K. Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity. Pharmaceutics. 7 (3), 137-151 (2015).
  7. Kariko, K., et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy. 16 (11), 1833-1840 (2008).
  8. Khantakova, J. N., et al. Transfection of bone marrow derived cells with immunoregulatory proteins. Cytokine. 108, 82-88 (2018).
  9. Franz, K. M., Kagan, J. C. Innate Immune Receptors as Competitive Determinants of Cell Fate. Molecular Cell. 66 (6), 750-760 (2017).
  10. Kaestner, L., Scholz, A., Lipp, P. Conceptual and technical aspects of transfection and gene delivery. Bioorganic & medicinal chemistry letters. 25 (6), 1171-1176 (2015).
  11. Kim, T. K., Eberwine, J. H. Mammalian cell transfection: the present and the future. Analytical and Bioanalytical Chemistry. 397 (8), 3173-3178 (2010).
  12. Kormann, M. S., et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nature Biotechnology. 29 (2), 154-157 (2011).
  13. Kariko, K., Buckstein, M., Ni, H., Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 23 (2), 165-175 (2005).
  14. Hornung, V., et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science. 314 (5801), 994-997 (2006).
  15. Pichlmair, A., et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 314 (5801), 997-1001 (2006).
  16. Herb, M., et al. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Science Signaling. 12 (568), (2019).
  17. Schmidt-Supprian, M., et al. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Molecular Cell. 5 (6), 981-992 (2000).
  18. Mandal, P. K., Rossi, D. J. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nature Protocols. 8 (3), 568-582 (2013).
  19. Oh, S., Kessler, J. A. Design, Assembly, Production, and Transfection of Synthetic Modified mRNA. Methods. 133, 29-43 (2018).
check_url/fr/60143?article_type=t

Play Video

Citer Cet Article
Herb, M., Farid, A., Gluschko, A., Krönke, M., Schramm, M. Highly Efficient Transfection of Primary Macrophages with In Vitro Transcribed mRNA. J. Vis. Exp. (153), e60143, doi:10.3791/60143 (2019).

View Video