Summary

使用第一原理计算在一维范德瓦尔斯异构结构中的探头 II 型带对齐

Published: October 12, 2019
doi:

Summary

由维也纳Ab initio仿真包进行的计算可用于识别纳米级材料的内在电子特性,并预测潜在的水分裂光催化剂。

Abstract

基于密度函数理论 (DFT) 的计算工具能够探索定性上新的、实验性可实现的纳米级化合物,用于目标应用。理论模拟提供了对功能材料内在电子特性的深刻理解。该协议的目标是通过计算解剖来搜索光催化剂候选物。光催化应用需要合适的带隙,相对于氧化还原电位,需要适当的带边缘位置。混合函数可以提供这些属性的准确值,但计算成本高昂,而 Perdew-Burke-Ernzerhof (PBE) 功能级别的结果可以有效地通过电场和拉伸应变,旨在提高光催化性能。为了说明这一点,在本手稿中,基于 DFT 的仿真工具 VASP 用于研究纳米管和纳米带在接地状态下组合的纳米复合材料的带对齐。为了解决光产生孔和电子在兴奋状态下的寿命问题,需要非异化动力学计算。

Introduction

全世界对清洁和可持续能源的需求促使对有前途的材料进行研究,以减少对有限石油资源的依赖。仿真比实验更高效、更经济,可以加速寻找新的功能材料。材料设计从理论角度2,3,4现在越来越流行,由于快速的发展,计算资源和理论的发展,使计算模拟更可靠5.在许多代码中实现的密度函数理论(DFT)计算正变得越来越可靠,产生可重现的结果6。

维也纳 Ab initio 仿真包 (VASP)7提供了预测分子和晶体特性的最有前途的 DFT 代码之一,并发布了 40,000 多项研究,利用了该代码。大多数工作是在Perdew-Burke-Ernzerhof(PBE)功能级别8上完成的,它低估了波段间隙大小,但抓住了带对齐和带偏移3的基本趋势。该协议旨在概述使用此计算工具研究用于清洁和可再生能源的纳米级材料的带边缘轮廓和带隙的详细信息。更多使用 VASP 的示例可在https://www.vasp.at。

本报告介绍了II型带对齐9的一维(1D)vdW异构结构的计算筛选,在光催化水分裂4中具有广阔的应用前景。具体来说,封装在纳米管(NT)内的纳米带(NRs)作为示例10进行了检查。为了解决非共价交互问题,使用 DFT-D3 方法的 vdW 校正包含11。VASP 在步骤 1.2、2.2、3.2、3.5.2 和第 4 节中执行 DFT 计算,由 CenTOS 系统中的高性能研究计算机使用便携式批处理系统 (PBS) 脚本执行。PBS 脚本的示例显示在补充材料中。步骤 3.3 中的 P4VASP 软件进行的数据后处理和步骤 3.4 中的 xmgrace 软件的图形图在 Ubuntu 系统中的本地计算机(笔记本电脑或台式机)上进行。

Protocol

1. 优化原子结构。 准备四个输入文件,用于 VASP 的结构松弛计算:INCAR、POSCAR、POTCAR 和 KPOINTS。注: INCAR 文件中有定义计算的指定参数。INCAR 文件中的行”EDIFFG = 0.02″指示所有原子都放松,直到每个原子上的力为 <0.02 eV/* 。POSCAR 文件包含原子几何信息。POSCAR文件中的初始晶格参数可以从理论3或实验参考文献12、13中选择。KPOIN…

Representative Results

封装在扶手椅 BN-NT (11,11) 中的 Zigzag BN-NRs 被选为 1D vdW 异构结构的代表性示例。晶格参数取自Sahin等人20。为方便起见,zigzag N 缩写为 Zn,其中 n 表示沿宽度14的 III+V 二分器。步骤2.3中的封装能量EL被用作纳米复合材料能量稳定性的粗略估计。封装在 BN-NT (11,11) 内的 Z2、Z3和 Z4的 EL值分别为 -0.033 eV/Ω、-0.06…

Discussion

第2、3和4节中的电子特性计算在各种纳米级材料中相似。步骤 1 中的初始原子模型应经过仔细设计以提取有意义的信息。例如,选择模型的因素可以是材料的大小或手性。此外,步骤 1.1 中的初始原子模型应为低成本结构放松做好合理准备。以协议中的纳米复合材料为例,NR应该以对称的方式封装在NT内。否则,使用 VASP 搜索优化结构将非常耗时。

为了考虑电场的作用,<sup cla…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国博士后科学基金会(授权号2017M612348)、青岛博士后基金会(授权号3002000-861805033070)和中国海洋大学青年人才项目(授权号3002000-8617013151)的支持。作者感谢李亚崇小姐准备了解说。

Materials

Nanotube Modeler Developed by Dr. Steffen Weber NanotubeModeler1.8 http://www.jcrystal.com/products/wincnt/NanotubeModeler.exe
P4VASP Orest Dubay p4vasp 0.3.30 Open source, available at www.p4vasp.at
v2xsf Developed by Dr. Jens Kunstmann v2xsf http://theory.chm.tu-dresden.de/~jk/software.html
VASP software Computational Materials Physics, Dept. of Physics, University of Vienna vasp.5.4.1 https://www.vasp.at
VMD software Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign vmd1.9.3 https://www.ks.uiuc.edu/Research/vmd
xcrysden Dept. of Physical and Organic Chemistry, Jozef Stefan Institute XCrySDen1.5.60 http://www.xcrysden.org/
Xmakemol Developed by M. P. Hodges xmakemol5.16 https://www.nongnu.org/xmakemol/XmakemolDownloads.html
Xmgrace software Grace Development Team under the coordination of Evgeny Stambulchik xmgrace5.1.25 http://plasma-gate.weizmann.ac.il/Grace/

References

  1. Collins, C., et al. Accelerated discovery of two crystal structure types in a complex inorganic phase field. Nature. 546 (7657), 280-284 (2017).
  2. Jain, A., Shin, Y., Persson, K. A. Computational predictions of energy materials using density functional theory. Nature Reviews Materials. 1 (1), 15004 (2016).
  3. de Jong, M., et al. Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data. 2, 150009 (2015).
  4. Fu, C. F., Wu, X. J., Yang, J. L. Material Design for Photocatalytic Water Splitting from a Theoretical Perspective. Advanced Materials. 30 (48), 1802106 (2018).
  5. Gu, T., Luo, W., Xiang, H. J. Prediction of two-dimensional materials by the global optimization approach. Wiley Interdisciplinary Reviews-Computational Molecular Science. 7 (2), e1295 (2017).
  6. Lejaeghere, K., et al. Reproducibility in density functional theory calculations of solids. Science. 351 (6280), aad3000 (2016).
  7. Kresse, G., Furthmüller, J. Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B. 54 (16), 11169-11186 (1996).
  8. Perdew, J. P., Burke, K., Ernzerhof, M. Generalized Gradient Approximation Made Simple. Physical Review Letters. 77 (18), 3865-3868 (1996).
  9. Ozcelik, V. O., Azadani, J. G., Yang, C., Koester, S. J., Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Physical Review B. 94 (3), 035125 (2016).
  10. Gong, M., et al. Robust staggered band alignment in one-dimensional van der Waals heterostructures: binary compound nanoribbons in nanotubes. Journal of Materials Chemistry C. 7 (13), 3829-3836 (2019).
  11. Grimme, S., Antony, J., Ehrlich, S., Krieg, H. A Consistent and Accurate ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. Journal of Chemical Physics. 132 (15), 154104 (2010).
  12. Zhang, L., Chen, Z. Q., Su, J., Li, J. F. Data mining new energy materials from structure databases. Renewable & Sustainable Energy Reviews. 107, 554-567 (2019).
  13. Zakutayev, A., et al. An open experimental database for exploring inorganic materials. Scientific Data. 5, 180053 (2018).
  14. Kou, L. Z., Tang, C., Frauenheim, T., Chen, C. F. Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube. Journal of Physical Chemistry Letters. 4 (8), 1328-1333 (2013).
  15. Kou, L. Z., Tang, C., Wehling, T., Frauenheim, T., Chen, C. F. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube. Nanoscale. 5 (8), 3306-3314 (2013).
  16. Kang, J., Tongay, S., Zhou, J., Li, J. B., Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Applied Physics Letters. 102 (1), 012111 (2013).
  17. Makov, G., Payne, M. C. Periodic boundary conditions in ab initio calculations. Physical Review B. 51 (7), 4014-4022 (1995).
  18. Chen, C., Lee, M., Clark, S. J. Band gap modification of singlewalled carbon nanotube and boron nitride nanotube under a transverse electric field. Nanotechnology. 15 (12), 1837 (2004).
  19. Zhang, Z. H., Guo, W. L. Energy-gap Modulation of BN Ribbons by Transverse Electric Fields: First-Principles Calculations. Physical Review B. 77 (7), 075403 (2008).
  20. Sahin, H., et al. Monolayer Honeycomb Structures of Group-IV Elements and III-V Binary Compounds: First-Principles Calculations. Physical Review B. 80 (15), 155453 (2009).
  21. Yang, L., et al. Combining Photocatalytic Hydrogen Generation and Capsule Storage in Graphene Based Sandwich Structures. Nature Communications. 8, 16049 (2017).
  22. Neugebauer, J., Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B. 46 (24), 16067 (1992).
  23. He, W., Li, Z. Y., Yang, J. L., Hou, J. G. Electronic structures of organic molecule encapsulated BN nanotubes under transverse electric field. Journal of Chemical Physics. 124 (15), 154709 (2006).
  24. Zhang, R. Q., et al. Direct Z-Scheme Water Splitting Photocatalyst Based on Two-Dimensional Van Der Waals Heterostructures. Journal of Physical Chemistry Letters. 9 (18), 5419-5424 (2018).
  25. Paiera, J., Marsman, M., Hummer, K., Kresse, G. Screened hybrid density functionals applied to solids. Journal of Chemical Physics. 124 (15), 154709 (2006).
  26. Pyzer-Knapp, E. O., Suh, C., Gómez-Bombarelli, R., Aguilera-Iparraguirre, J., Aspuru-Guzik, A. What Is High-Throughput Virtual Screening? A Perspective from Organic Materials Discovery. Annual Review of Materials Research. 45, 195-216 (2015).
  27. Cerqueira, T. F. T., et al. Identification of Novel Cu, Ag, and Au Ternary Oxides from Global Structural Prediction. Chemistry of Materials. 27 (13), 4562-4573 (2015).
check_url/fr/60180?article_type=t

Play Video

Citer Cet Article
Hu, H., Lu, D., Dou, K. P., Shi, X. Probe Type II Band Alignment in One-Dimensional Van Der Waals Heterostructures Using First-Principles Calculations. J. Vis. Exp. (152), e60180, doi:10.3791/60180 (2019).

View Video