Summary

机器人辅助胰腺切除术的技术细节

Published: September 28, 2019
doi:

Summary

以下手稿详细介绍了在匹兹堡大学医学中心进行的机器人辅助胰腺切除术的逐步方法。

Abstract

自2003年首次报告以来,机器人胰腺切除术(RPD)在胰腺外科医生中越来越受欢迎。机器人平台的固有优势,包括三维视觉、手腕仪器和改进的人体工学设计,使外科医生能够重述开放胰腺切除术的原则,从而安全进行肿瘤解剖、血相病、和细致的重建。在过去的十年中,在概述机器人 Whipple 的安全性、可行性和学习曲线方面取得了重大进展。当由在RPD中经验丰富的大容量胰腺外科医生进行手术时,最近的比较有效性研究表明,与开放技术相比,潜在的优势,包括减少住院和发病率。国家数据还显示,与腹腔镜相比,转化率有所降低。虽然仍然需要长期肿瘤数据,但边缘切除和淋巴结收获的短期肿瘤替代物表明,在肿瘤结果上不会妥协。随着胰腺外科医生越来越多地将机器人技术融入到他们的实践中,对于RPD的安全应用和传播,必须进行基于熟练程度的培训和认证。在这里,我们提供在匹兹堡大学医学中心进行的机器人胰腺切除术的详细步骤。

Introduction

胰腺切除术(PD)是一个复杂的操作,结合了具有挑战性的切除和甲子重建。在其早期,传统的开放方法与高并发症率和死亡率接近25%在过去三十年中,手术技术和围手术期护理的改进导致结果的相应改善,死亡率降至5%以下,特别是在高容量中心1,2,3. 尽管如此,发病率仍然很高。随着外科技术的进步,通过腹腔镜或机器人辅助手术的微创手术方法已经出现,以遏制这种发病率。自2003年首次报告以来,胰腺外科医生机器人胰腺切除术(RPD)的兴趣有所增长。机器人平台的固有优势,包括三维 (3D) 视觉、手腕仪器和改进的人体工程学,使外科医生能够以微创方式概括开放式 PD (OPD) 原理,包括安全肿瘤学解剖,赫比沙,并精心重建4,6,7,8,9,10。本手稿的目的是提供在匹兹堡大学医学中心(UPMC)11、12、13进行RPD的详细步骤。

在所提出的案例研究中,一名42岁女性具有前肠内皮毛质粘质(IPMN)史,最初出现急性胰腺炎。腹部的脑血管造影(CT)显示一个3.3厘米的胰腺头部病变与主胰腺导管的相关扩张(图1A,B),与混合型IPMN。内窥镜超声(EUS)证实存在不规则的异质囊肿,测量3.1 x 2.0厘米的胰腺头部与混合固体和囊肿成分和主要PD导管扩张(图1C)。EUS细胞学显示,存在无高风险分子突变的非典型细胞14,15。包括血清肿瘤标记物在内的生化工作正常,CA19-9 12 U/mL。根据福冈标准,该患者被推荐为PD,并被认为是机器人方法16的合适人选。

Protocol

本议定书遵循匹兹堡大学医学中心人类研究伦理委员会(机构审查委员会:PRO15040497)的指导方针 1. 术前工作和选择 检查三脚椎CT扫描(即,胸部,腹部和骨盆与主要成像模式),以评估疾病的程度,排除转移,并划定异常或异常动脉血管。 执行EUS和内窥镜逆行胆管造影术(ERCP),用于组织诊断和胆汁减压,特别是在胰腺癌计划新辅助化疗的设定中。 …

Representative Results

在代表性病例中,总手术时间是225分钟,估计失血(EBL)为50 mL(表1)。病人住进了外科病房。她的术后课程遵循UPMC机构ERAS路径。我们定期在POD+1和#3评估JP淀粉酶,以评估胰腺瘘,并尽可能在POD 3-5上练习早期排泄。患者的JP淀粉酶水平分别为403升和68升。因此,在 POD_3 上移除了排放。病人在POD+6号上出院了。 标本的病理学分析显示,侵入性中微分化腺癌(0.2厘?…

Discussion

随着手术技术的进步,腹腔镜和机器人辅助手术越来越多地用于胃肠道和肝胆手术。传统的腹腔镜检查与许多手术的开放式手术的好处有关。然而,固有的局限性,如手术灵巧性下降,人体工学不理想,缺乏手腕仪器,和二维可视化,限制了其传播的复杂胃肠道手术,如PD。

与腹腔镜检查相反,机器人平台允许在 3D 视觉下执行微创操作,增强灵巧性并使用铰接(手腕)仪器?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

没什么可承认的。

Materials

3-0 V-Loc sutures Medtronic (Minneapolis, MN) VLOCMo614 Barbed Absorable Suture
4-5 Fr Freeman Pancreatic Flexi-Stent Hobbs Medical (Stafford Springs, CT) 6542, 6552 Pancreatic Duct Stent
5-0 PDS (polydiosxanone) Ethicon (Somerville, NJ) D10063 Synthetic Absorbable Suture
Cadíere forceps Intuitive (Sunnyvale, CA) 470049 Surgical Robot Instrument
Da Vinci Si Intuitive (Sunnyvale, CA) Surgical Robot
Da Vinci Xi Intuitive (Sunnyvale, CA) Surgical Robot
Endo Clip 10 mm Applier Covidien (Dublin, Ireland) 176619 Laparoscopic Titanium Clip Applier
Endo GIA 45 mm Curved Tip Articulating Vascular Stapler with Tri-Stapler Technology Covidien (Dublin, Ireland) EGIA45CTAVM Laparoscopic Surgical Stapler
Endo GIA 60 mm Articulating Stapler with Tri-Stapler Technology Covidien (Dublin, Ireland) EGIA60AMT Laparoscopic Surgical Stapler
Endo GIA 60 mm Curved Tip Articulating Vascular Stapler with Tri-Stapler Technology Covidien (Dublin, Ireland) EGIA60CTAVM Laparoscopic Surgical Stapler
EndoCatch Gold 10 mm Specimen Pouch Medtronic (Minneapolis, MN) 173050G Specimen Extraction Bag
EndoCatch II 15 mm Specimen Pouch Medtronic (Minneapolis, MN) 173049 Specimen Extraction Bag
Fenestrated bipolar forceps Intuitive (Sunnyvale, CA) 470205 Surgical Robot Instrument
GelPOINT Mini Advanced Access Platform Applied Medical (Rancho Santa Margarita, CA) CNGL3 Laparoscopic Abdominal Access Platform
Large needle driver Intuitive (Sunnyvale, CA) 470006 Surgical Robot Instrument
Large SutureCut needle driver Intuitive (Sunnyvale, CA) 470296 Surgical Robot Instrument
LigaSure Blunt Tip Laparoscopic Sealer/Divider Medtronic (Minneapolis, MN) LF1844 Laparoscopic Bioplar Device
Mediflex liver retractor Mediflex (Islandia NY) Laparoscopic Liver Retractor
Monopolar curved scissors Intuitive (Sunnyvale, CA) 470179 Surgical Robot Instrument
Permanent cautery hook Intuitive (Sunnyvale, CA) 470183 Surgical Robot Instrument
ProGrasp forceps Intuitive (Sunnyvale, CA) 470093 Surgical Robot Instrument

References

  1. Tseng, J. F., et al. The learning curve in pancreatic surgery. Surgery. 141, 456-463 (2007).
  2. Cameron, J. L., He, J. Two Thousand Consecutive Pancreaticoduodenectomies. Journal of the American College of Surgeons. 220, 530-536 (2015).
  3. Birkmeyer, J., et al. Effect of hospital volume on in-hospital mortality with pancreaticoduodenectomy. Surgery. 125, 250-256 (1999).
  4. Cirocchi, R., et al. A systematic review on robotic pancreaticoduodenectomy. Surgical Oncology. 22, 238-246 (2013).
  5. Giulianotti, P. C., et al. Robotics in general surgery: personal experience in a large community hospital. Archives of surgery. 138, 777-784 (2003).
  6. Wang, S. -. E., Shyr, B. -. U., Chen, S. -. C., Shyr, Y. -. M. Comparison between robotic and open pancreaticoduodenectomy with modified Blumgart pancreaticojejunostomy: A propensity score-matched study. Surgery. 164 (6), 1162-1167 (2018).
  7. Magge, D., et al. Robotic pancreatoduodenectomy at an experienced institution is not associated with an increased risk of post-pancreatic hemorrhage. HPB. 20, 448-455 (2018).
  8. Zureikat, A. H., et al. Minimally invasive hepatopancreatobiliary surgery in North America: an ACS-NSQIP analysis of predictors of conversion for laparoscopic and robotic pancreatectomy and hepatectomy. The official journal of Hepato-Pancreato-Billiary Association. 19, 595-602 (2017).
  9. Zureikat, A. H., et al. A Multi-institutional Comparison of Perioperative Outcomes of Robotic and Open Pancreaticoduodenectomy. Annals of Surgery. 264, 640-649 (2016).
  10. McMillan, M. T., et al. A Propensity Score-Matched Analysis of Robotic vs Open Pancreatoduodenectomy on Incidence of Pancreatic Fistula. JAMA Surgery. 152 (4), 327-335 (2016).
  11. Nguyen, K., et al. Technical Aspects of Robotic-Assisted Pancreaticoduodenectomy (RAPD). Journal of Gastrointestinal Surgery. 15, 870-875 (2011).
  12. Zureikat, A. H., Nguyen, K. T., Bartlett, D. L., Zeh, H. J., Moser, J. A. Robotic-Assisted Major Pancreatic Resection and Reconstruction. Archives of Surgery. 146, 256-261 (2011).
  13. Knab, M. L., et al. Evolution of a Novel Robotic Training Curriculum in a Complex General Surgical Oncology Fellowship. Annals in Surgical Oncology. 25 (12), 3445-3452 (2018).
  14. Wu, J., et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Science Translational Medicine. 3, 92 (2011).
  15. Singhi, A. D., et al. American Gastroenterological Association guidelines are inaccurate in detecting pancreatic cysts with advanced neoplasia: a clinicopathologic study of 225 patients with supporting molecular data. Gastrointestinal Endoscopy. 83, 1107-1117 (2016).
  16. Tanaka, M., et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology. 17, 738-753 (2017).
  17. Malka, D., Castan, F., Conroy, T. FOLFIRINOX Adjuvant Therapy for Pancreatic Cancer. New England Journal of Medicine. 380, 1187-1189 (2019).
  18. Nassour, I., et al. Robotic Versus Laparoscopic Pancreaticoduodenectomy: a NSQIP Analysis. Journal of Gastrointestinal Surgery Official Journal of the Society for Surgery of the Alimentary Tract. 21, 1784-1792 (2017).
  19. Gabriel, E., Thirunavukarasu, P., Attwood, K., Nurkin, S. J. National disparities in minimally invasive surgery for pancreatic tumors. Surgical Endoscopy. 31, 398-409 (2017).
  20. Konstantinidis, I. T., et al. Robotic total pancreatectomy with splenectomy: technique and outcomes. Surgical Endoscopy. 32, 3691-3696 (2018).
  21. Kornaropoulos, M., et al. Total robotic pancreaticoduodenectomy: a systematic review of the literature. Surgical Endoscopy. 31, 4382-4392 (2017).
  22. Boone, B. A., et al. Assessment of Quality Outcomes for Robotic Pancreaticoduodenectomy: Identification of the Learning Curve. JAMA Surgery. 150, 416-422 (2015).
  23. Fisher, W. E., Hodges, S. E., Wu, M. -. F. F., Hilsenbeck, S. G., Brunicardi, F. Assessment of the learning curve for pancreaticoduodenectomy. American Journal of Surgery. 203, 684-690 (2012).
  24. Hmidt, C., et al. Effect of hospital volume, surgeon experience, and surgeon volume on patient outcomes after pancreaticoduodenectomy: a single-institution experience. Archives of Surgery. 145, 634-640 (2010).
  25. Zureikat, A. H., Hogg, M. E., Zeh, H. J. The Utility of the Robot in Pancreatic Resections. Advances in Surgery. 48, 77-95 (2014).
check_url/fr/60261?article_type=t

Play Video

Citer Cet Article
Kim, A. C., Rist, R. C., Zureikat, A. H. Technical Detail for Robot Assisted Pancreaticoduodenectomy. J. Vis. Exp. (151), e60261, doi:10.3791/60261 (2019).

View Video