Summary

美味的西式自助餐厅饮食作为模拟啮齿动物饮食诱发肥胖症的可靠方法

Published: November 01, 2019
doi:

Summary

该协议描述了使用高度可口的西式自助餐厅饮食来模拟啮齿动物的暴食和肥胖。在这里,我们提供了食物选择、制备和测量的详细提纲,并解释了有助于产生强健和可重复表型的方法因素。

Abstract

肥胖在发达国家和发展中国家的发病率正在迅速增加,已知会导致或加剧许多疾病。肥胖的健康负担及其合并条件突出表明,需要更好地了解其发病机制,但伦理限制限制了人类的研究。为此,实验室动物肥胖的外部有效模型对于理解超重和肥胖至关重要。虽然许多物种已经被用来模拟伴随人类肥胖的变化范围,但啮齿动物是最常用的。我们的实验室已经开发出一种西式自助餐厅饮食,持续导致大量体重增加和啮齿动物代谢疾病的标志。这种饮食使啮齿动物接触各种高可口的食物,从而诱发吞咽过度,从而模拟了现代西方饮食环境。这种饮食迅速诱导体重增加和身体脂肪积累大鼠允许研究过量饮食和肥胖的影响。虽然自助餐厅饮食可能无法提供与纯化高脂肪或高脂肪、高糖饮食相同的宏量营养素和微量营养素特征控制,但自助餐厅饮食通常诱发比纯化饮食更严重的代谢表型饮食,更符合在超重和肥胖人群中观察到的代谢紊乱。

Introduction

肥胖及其相关合并症对全球健康负担作出巨大贡献,占澳大利亚疾病负担的7%2。肥胖的一个主要危险因素是食用饱和脂肪和精制碳水化合物含量高、纤维和微量营养素含量低的不健康饮食3。确定肥胖治疗干预的目标需要能够系统地评估对多个生化和生理系统的影响的模型。通过使用啮齿动物模型,我们对肥胖病因的理解有了实质性的提高,在环境因素易于控制的条件下,可以随时间进行行为、代谢和分子效应的研究操纵。

自助餐厅饮食 (CAF) 模式的饮食诱发肥胖包括补充啮齿动物的标准小食与各种可口的食物,要么高饱和脂肪,精制碳水化合物,或两者兼而有之。这些食物的例子包括蛋糕、甜饼干和高脂肪的咸味小吃(如加工肉类、奶酪和薯条)。它可靠地促进啮齿动物的吞咽过度和快速体重增加。该模型的主要特征是提供各种高度可口的食物,旨在模拟现代食品环境。获得多样性会增加大鼠在短期4人类5的食物摄入量,即使食物匹配的可食用性,并只在风味和嗅觉线索4,6变化。然而,一项研究表明,提供能量和宏量营养素匹配的纯化饮食,味道和质地各不相同,对大鼠的长期体重增加没有影响7,这表明营养成分和明显的口腔后效应不同的食物也可能导致暴食。暴露于多种口味和质地克服感官特定的饱质感,这描述了与替代5相比,吃最近吃的食物的欲望减少。在我们的实验室里,我们同样观察到,使用高可口的食物会进一步放大暴食。

这种CAF饮食已经使用了40多年,因为Sclafani8报告说,雌性大鼠暴露于各种”超市食品”(棉花糖,巧克力,花生酱,饼干,香肠和奶酪)表现出加速体重增加相对于控件。这和其他早期研究指出,CAF式饮食似乎比纯高脂肪或高碳水化合物饮食8、9更有效地加速体重增加。20世纪80年代的工作的特点是宏量营养素谱10和膳食模式11的老鼠喂养CAF饮食,并表现出深刻的变化脂肪质量和胰岛素水平9,10和热发生12。我们小组已经使用CAF饮食模型肥胖超过20年13,14,在此期间,我们使用了几种变种的饮食。除了常规的菜水外,老鼠每天至少吃两个甜食和两个咸味的食物。近年来,我们已经开始补充固体CAF食品与10%蔗糖溶液。根据不同的实验设计定制CAF饮食的能力是模型的强项。

CAF 饮食促进立即吞咽症(即,在前 24 小时内)和体重和脂肪质量的稳步增加。然而,最大化多样性的一个后果是宏量营养素和微量营养素的摄入不受控制,有些人认为这是一个不可逾越的缺陷。饮食诱发肥胖症的研究更普遍地使用纯化高脂肪 (HF) 或组合高脂肪、高糖 (HFHS) 饮食,这些饮食对营养成分的精确控制,且比 CAF 模型的劳动密集型程度低,后者需要日常监控和仔细规划和执行时间表。商业上可用的纯化HF饮食的转化相关性是一个持续争论的话题,因为他们的脂肪酸分布和脂肪和蔗糖的比例可能与人类膳食摄入量16不一致。虽然CAF饮食对营养成分的控制程度不如纯化饮食,但它旨在模拟大多数现代社会中食物选择的可食用性和多样性。

Protocol

此处描述的协议已针对大鼠使用进行了优化。虽然我们已经成功地在小鼠17、18中使用CAF饮食,软性食物研磨可能会进一步产生降低食物摄入量可靠性19的错误。本议定书由新南威尔士大学动物护理和伦理委员会批准,并符合澳大利亚国家卫生和医学研究委员会。 注:在我们的短期研究中,很少观察到?…

Representative Results

如图2A所示,根据三组雄性斯普拉格道利大鼠的数据,CAF饮食喂养比小食对照组的能量摄入增加了2.5倍,在6周内一致。其他研究已经证实,这种吞咽症的程度持续超过1021和1622周的实验。体重曲线(图2B)表明CAF饮食喂养导致平均体重与3-4周饮食后对照组相比有20%的差异,与体重增加与人类?…

Discussion

通过让大鼠接触各种高脂肪和高糖的可口食物,这里描述的CAF饮食协议为许多人食用的所谓”西方饮食”提供了一个可靠而可靠的模型。在接触的前 24 小时内观察到高吞咽症(评估为相对于对照组能量摄入的显著增长),在几周内可以看到具有统计学意义的体重差异。因此,CAF是啮齿动物饮食诱发肥胖的有效模型。

几项研究表明,CAF式饮食比纯化HF或HFHS饮食产生更夸张的肥胖?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NHMRC项目赠款(#568728、#150262、#1126929)对MJM的支持。

Materials

2-5 L plastic bottle For preparing 10% sucrose solution, if applicable
Chopping board Plastic is advised
Freezer For storing CAF foods
Gordon's maintenance rodent chow Gordon's Specialty Stockfeeds (Australia) Maintenance diet used in our laboratory (14 kJ/g; 65% carb, 13% fat and 22% protein, as energy)
Large plastic storage boxes All items above can be stored in containers for easy access
Large spoon For CAF diet preparation
Microwave For CAF diet thawing (when required)
Non-serrated knife For CAF diet preparation
Paper towel Important for cleaning work surfaces and the knife during CAF prep
Plastic containers These are for weighing CAF food items on measurement days
Plastic funnel For preparing 10% sucrose solution, if applicable
Red light As CAF diet should be refreshed near the onset of the dark phase each day, a red light will assist when working in the dark
Tuna tins For presenting 'wetter' CAF food items. Plastic containers may also be suitable
Weigh container x 3 Separate containers should be used to weigh rats, chow & bottles, and CAF foods
Weighing scale Sensitivity to 0.1g is recommended
White sugar For 10% sucrose solution, if applicable

References

  1. Swinburn, B. A., et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. Lancet. 393 (10173), 791-846 (2019).
  2. . . Australian Institute of Health and Welfare. Vol. Cat. no. PHE 215. , (2017).
  3. GBD Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. , 30041-30048 (2019).
  4. Treit, D., Spetch, M. L., Deutsch, J. A. Variety in the flavor of food enhances eating in the rat: a controlled demonstration. Physiology & Behavior. 30 (2), 207-211 (1983).
  5. Rolls, B. J. Experimental analyses of the effects of variety in a meal on human feeding. American Journal of Clinical Nutrition. 42, 932-939 (1985).
  6. Louis-Sylvestre, J., Giachetti, I., Le Magnen, J. Sensory versus dietary factors in cafeteria-induced overweight. Physiology & Behavior. 32 (6), 901-905 (1984).
  7. Naim, M., Brand, J. G., Kare, M. R., Carpenter, R. G. Energy Intake, Weight Gain and Fat Deposition in Rats Fed Flavored, Nutritionally Controlled Diets in a Multichoice (“Cafeteria”) Design. The Journal of Nutrition. 115 (11), 1447-1458 (1985).
  8. Sclafani, A., Springer, D. Dietary obesity in adult rats: similarities to hypothalamic and human obesity syndromes. Physiology & Behavior. 17 (3), 461-471 (1976).
  9. Rolls, B. J., Rowe, E. A., Turner, R. C. Persistent obesity in rats following a period of consumption of a mixed, high energy diet. Journal of Physiology. 298, 415-427 (1980).
  10. Prats, E., Monfar, M., Castella, J., Iglesias, R., Alemany, M. Energy intake of rats fed a cafeteria diet. Physiology & Behavior. 45 (2), 263-272 (1989).
  11. Rogers, P. J., Blundell, J. E. Meal patterns and food selection during the development of obesity in rats fed a cafeteria diet. Neuroscience & Biobehavioral Reviews. 8 (4), 441-453 (1984).
  12. Rothwell, N. J., Stock, M. J. Thermogenesis induced by cafeteria feeding in young growing rats. Proceedings of the Nutrition Society. 39 (2), 45 (1980).
  13. Hansen, M. J., Ball, M. J., Morris, M. J. Enhanced inhibitory feeding response to alpha-melanocyte stimulating hormone in the diet-induced obese rat. Brain Research. 892 (1), 130-137 (2001).
  14. Hansen, M. J., Schioth, H. B., Morris, M. J. Feeding responses to a melanocortin agonist and antagonist in obesity induced by a palatable high-fat diet. Brain Research. 1039 (1-2), 137-145 (2005).
  15. Moore, B. J. The cafeteria diet–an inappropriate tool for studies of thermogenesis. The Journal of Nutrition. 117 (2), 227-231 (1987).
  16. Speakman, J. R. Use of high-fat diets to study rodent obesity as a model of human obesity. International Journal of Obesity (London). , 0363-0367 (2019).
  17. Hansen, M. J., et al. The lung inflammation and skeletal muscle wasting induced by subchronic cigarette smoke exposure are not altered by a high-fat diet in mice. PLoS One. 8 (11), 80471 (2013).
  18. Chen, H., Iglesias, M. A., Caruso, V., Morris, M. J. Maternal cigarette smoke exposure contributes to glucose intolerance and decreased brain insulin action in mice offspring independent of maternal diet. PLoS One. 6 (11), 27260 (2011).
  19. Cameron, K. M., Speakman, J. R. The extent and function of ‘food grinding’ in the laboratory mouse (Mus musculus). Laboratory Animals. 44 (4), 298-304 (2010).
  20. Beilharz, J. E., Kaakoush, N. O., Maniam, J., Morris, M. J. Cafeteria diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Molecular Psychiatry. 23 (2), 351-361 (2018).
  21. South, T., Holmes, N. M., Martire, S. I., Westbrook, R. F., Morris, M. J. Rats eat a cafeteria-style diet to excess but eat smaller amounts and less frequently when tested with chow. PLoS One. 9 (4), 93506 (2014).
  22. Martire, S. I., et al. Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress. Behavioral Brain Research. 265, 132-141 (2014).
  23. Grech, A., Rangan, A., Allman-Farinelli, M. Macronutrient Composition of the Australian Population’s Diet; Trends from Three National Nutrition Surveys 1983, 1995 and 2012. Nutrients. 10 (8), (2018).
  24. Austin, G. L., Ogden, L. G., Hill, J. O. Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971-2006. American Journal of Clinical Nutrition. 93 (4), 836-843 (2011).
  25. Sclafani, A., Gorman, A. N. Effects of age, sex, and prior body weight on the development of dietary obesity in adult rats. Physiology & Behavior. 18 (6), 1021-1026 (1977).
  26. Sampey, B. P., et al. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring). 19 (6), 1109-1117 (2011).
  27. Buyukdere, Y., Gulec, A., Akyol, A. Cafeteria diet increased adiposity in comparison to high fat diet in young male rats. PeerJ. 7, 6656 (2019).
  28. Oliva, L., et al. In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet. PeerJ. 5, 3697 (2017).
  29. Higa, T. S., Spinola, A. V., Fonseca-Alaniz, M. H., Evangelista, F. S. Comparison between cafeteria and high-fat diets in the induction of metabolic dysfunction in mice. International Journal of Physiology, Pathophysiololgy and Pharmacology. 6 (1), 47-54 (2014).
  30. Zeeni, N., Dagher-Hamalian, C., Dimassi, H., Faour, W. H. Cafeteria diet-fed mice is a pertinent model of obesity-induced organ damage: a potential role of inflammation. Inflammation Research. 64 (7), 501-512 (2015).
  31. Bortolin, R. C., et al. A new animal diet based on human Western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. International Journal of Obesity (London). 42 (3), 525-534 (2018).
  32. Hansen, M. J., Jovanovska, V., Morris, M. J. Adaptive responses in hypothalamic neuropeptide Y in the face of prolonged high-fat feeding in the rat. Journal of Neurochemistry. 88 (4), 909-916 (2004).
  33. Martire, S. I., Westbrook, R. F., Morris, M. J. Effects of long-term cycling between palatable cafeteria diet and regular chow on intake, eating patterns, and response to saccharin and sucrose. Physiology & Behavior. 139, 80-88 (2015).
  34. Shiraev, T., Chen, H., Morris, M. J. Differential effects of restricted versus unlimited high-fat feeding in rats on fat mass, plasma hormones and brain appetite regulators. Journal of Neuroendocrinology. 21 (7), 602-609 (2009).
  35. Beilharz, J. E., Maniam, J., Morris, M. J. Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats. Brain, Behavior and Immunity. 37, 134-141 (2014).
  36. Bhagavata Srinivasan, S. P., Raipuria, M., Bahari, H., Kaakoush, N. O., Morris, M. J. Impacts of Diet and Exercise on Maternal Gut Microbiota Are Transferred to Offspring. Frontiers in Endocrinology. 9, 716-716 (2018).
  37. Kaakoush, N. O., et al. Alternating or continuous exposure to cafeteria diet leads to similar shifts in gut microbiota compared to chow diet. Molelcular Nutrition & Food Research. 61 (1), (2017).
  38. Raipuria, M., Bahari, H., Morris, M. J. Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats. PLoS One. 10 (4), 0120980 (2015).
  39. Beilharz, J. E., Maniam, J., Morris, M. J. Short-term exposure to a diet high in fat and sugar, or liquid sugar, selectively impairs hippocampal-dependent memory, with differential impacts on inflammation. Behavioral Brain Research. 306, 1-7 (2016).
  40. Darling, J. N., Ross, A. P., Bartness, T. J., Parent, M. B. Predicting the effects of a high-energy diet on fatty liver and hippocampal-dependent memory in male rats. Obesity (Silver Spring). 21 (5), 910-917 (2013).
  41. Gomez-Smith, M., et al. Reduced Cerebrovascular Reactivity and Increased Resting Cerebral Perfusion in Rats Exposed to a Cafeteria Diet. Neurosciences. 371, 166-177 (2018).
  42. Martire, S. I., Holmes, N., Westbrook, R. F., Morris, M. J. Altered feeding patterns in rats exposed to a palatable cafeteria diet: increased snacking and its implications for development of obesity. PLoS One. 8 (4), 60407 (2013).
  43. Del Bas, J. M., et al. Alterations in gut microbiota associated with a cafeteria diet and the physiological consequences in the host. International Journal of Obesity (London). 42 (4), 746-754 (2018).
  44. Ferreira, A., Castro, J. P., Andrade, J. P., Dulce Madeira, M., Cardoso, A. Cafeteria-diet effects on cognitive functions, anxiety, fear response and neurogenesis in the juvenile rat. Neurobiology of Learning and Memory. 155, 197-207 (2018).
  45. Ribeiro, A., Batista, T. H., Veronesi, V. B., Giusti-Paiva, A., Vilela, F. C. Cafeteria diet during the gestation period programs developmental and behavioral courses in the offspring. International Journal of Developmental Neuroscience. 68, 45-52 (2018).
  46. Leffa, D. D., et al. Effects of Acerola (Malpighia emarginata DC.) Juice Intake on Brain Energy Metabolism of Mice Fed a Cafeteria Diet. Molecular Neurobiology. 54 (2), 954-963 (2017).
  47. Mn, M., Smvk, P., Battula, K. K., Nv, G., Kalashikam, R. R. Differential response of rat strains to obesogenic diets underlines the importance of genetic makeup of an individual towards obesity. Scientific Reports. 7 (1), 9162 (2017).
  48. Schemmel, R., Mickelsen, O., Gill, J. L. Dietary obesity in rats: Body weight and body fat accretion in seven strains of rats. The Journal of Nutrition. 100 (9), 1041-1048 (1970).
  49. Montgomery, M. K., et al. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia. 56 (5), 1129-1139 (2013).
  50. Krzizek, E. C., et al. Prevalence of Micronutrient Deficiency in Patients with Morbid Obesity Before Bariatric Surgery. Obesity Surgery. 28 (3), 643-648 (2018).
check_url/fr/60262?article_type=t

Play Video

Citer Cet Article
Leigh, S., Kendig, M. D., Morris, M. J. Palatable Western-style Cafeteria Diet as a Reliable Method for Modeling Diet-induced Obesity in Rodents. J. Vis. Exp. (153), e60262, doi:10.3791/60262 (2019).

View Video