Summary

使用CyanoGate模块化克隆工具包进行共生对蓝藻的遗传改造

Published: October 31, 2019
doi:

Summary

在这里,我们提出一个协议,描述如何使用CyanoGate模块化克隆工具包组装自我复制载体,ii) 通过结合将载体引入蓝藻宿主,iii) 使用板读取器或流式细胞仪。

Abstract

蓝藻是一组不同的原核光合生物,可以进行基因改造,用于可再生生产有用的工业商品。合成生物学的最新进展导致开发若干克隆工具包,如CyanoGate,这是一个标准化的模块化克隆系统,用于建立质粒载体,以便随后转化或结合转移到蓝藻中。在这里,我们概述了组装自我复制载体(例如,携带荧光标记表达盒)和结合转移载体到蓝藻菌株Synechocystis sp. PCC 6803 或Synechococcus 的详细方法埃隆塔图斯UTEX 2973.此外,我们概述了如何使用板读器或流动细胞仪来描述遗传部件(例如启动器)的性能。

Introduction

蓝藻是自养菌,可用于各种天然和异物高价值代谢产物1、2、3、4、5的生物合成。 6.要扩大商业可行性,仍需要克服几个障碍,最显著的是,与异养生物平台(如大肠杆菌和酵母)相比,产量相对较低7。最近现有基因工程工具的扩展和合成生物学范式在蓝藻研究中的采用,正在帮助克服这些挑战,并进一步将蓝藻发展为高效的生物工厂8910.

将DNA引入蓝藻的主要方法是转化、结合和电穿孔。通过转化或电穿孔转移到蓝藻的载体是”自杀”载体(即促进同源重组的综合载体),而自我复制的载体可以通过转化、联结或电穿孔。对于前者,一个协议可用于工程模型物种,适合自然转化11。最近,一种名为CyanoGate的蓝藻模块化克隆(MoClo)工具包已经开发出来,采用标准化的金门矢量组装方法,采用自然转化、电穿孔或结合12进行工程。

金门式装配技术近年来日益普及,装配标准和零件库现已可供各种生物使用,包括13、14、15、16 , 17.金门使用IIS型限制酶(例如,BsaI、BpiI、BsmBI、BtgZI和AarI)和一套接受酶和独特的悬垂,以方便在”一锅”组装反应中对多个序列进行定向分层组装。IIS 型限制酶可识别独特的不对称序列,并切断其识别位点的固定距离,以生成交错的”粘性端”切口(通常为 4 核苷酸 [NT] 悬垂),随后可利用该切口驱动有序 DNA组装反应15,18。这促进了由通用语法(如 PhytoBricks 标准19)定义的模块化 0 级部件(例如启动器、打开的读取框架和终结器)的大型库的开发。然后,0 级部件可以容易地组装成 1 级表达式盒,然后更复杂的高阶组件(例如,多基因表达式构造)可以构建在选择12、15的接受器向量中。金门式装配技术的一个关键优势是,在高通量设施(如DNA铸造厂20、21)实现自动化,可以测试复杂的实验设计,不能轻易通过人工。

CyanoGate建立在已建立的工厂MoClo系统12,15。要将新部件合并到 CyanoGate 中,必须首先将零件序列进行驯化,即必须删除 BsaI 和 BpiI 的”非法”识别站点。对于开放读取帧的零件编码(即编码序列 CDS),识别站点可以通过在序列中生成同义词突变(即将协子更改为编码相同氨基酸残渣的替代方法)来中断识别位点。这可以通过多种方法实现,从DNA合成到聚合酶链式反应(PCR)扩增为基础的策略,如吉布森组装22。根据所使用的表达式主机,应注意避免引入可能抑制翻译效率的稀有科顿23。在启动器和终结器序列中移除识别站点通常是一项风险更大的工作,因为修改可能会影响功能,并且部件可能无法按预期执行。例如,对假定转录因子结合位点或启动剂内的核糖体结合位点的变化可能会改变对诱导/抑制的强度和响应能力。同样,对关键终结器结构特征(例如,GC富干、环和多U尾)的修改可能会改变终止效率和效应基因表达24,25。尽管可以使用多个在线资源来预测启动子和终止器序列的活动,并告知建议的突变是否会影响性能2627,但这些工具通常不能预测在蓝藻28,29,30。因此,仍建议在体内对改性部件进行表征,以确认活性。为了协助克隆顽固的序列,CyanoGate包括基于BioBrick载体pSB4K512,16,31的低拷贝克隆接受载体。此外,爱丁堡基因组铸造厂还提供”设计和构建”门户,以帮助进行载体设计(dab.genomefoundry.org)。最后,也是最重要的,CyanoGate 包括两个 T 级接受载体设计(相当于 2 级接受载体)15,用于使用自杀载体将 DNA 引入蓝藻,或能够自我复制的广泛宿主范围载体在几个蓝藻菌种32,33,34。

在这里,我们将重点描述用于生成 T 级自我复制载体的协议,以及Synechocystis PCC 6803 和Synechocous UTEX 2973(Synechocystis PCC 6803 和 S. elongatus)的遗传修饰UTEX 2973 以后通过结合(也称为三亲交配)。细菌细胞之间的DNA的共生转移是一个描述良好的过程,以前曾用于工程蓝藻物种,特别是那些不能自然胜任的物种,如S.长龙UTEX 297335, 36,3738394041.简而言之,用携带要转移的载体的大肠杆菌菌株(”货物”载体)和载体(在同一大肠杆菌菌株或附加菌株中)孵育,以促成结合(”动员器”和”帮助器”向量)。进行夫妻转移需要四个关键条件:1)参与DNA转移的细胞之间的直接接触,2)货物载体必须与结合系统兼容(即,它必须包含适当的转移来源(oriT),也称为bom(流动性基础)位点,3) DNA刻痕蛋白(例如,由生物基因编码),在oriT处刻痕 DNA 以启动 DNA 到青霉菌的单链转移,必须存在并表达从货物或帮手载体,和4)转移的DNA不得破坏在受体氰化细胞(即,必须抵抗降解,例如,限制内细胞内膜酶活性)35,42。使货物载体得以持续,复制的来源必须与受体青霉菌兼容,以便自我复制和扩散到子细胞后分裂。为了帮助条件3和4,几个帮助载体可以通过Addgene和其他商业来源,编码生物以及几个甲基酶,以保护从原生内分酶在宿主氰化酶43。在本协议中,分别由MC1061大肠杆菌菌株携带动员器和辅助载体pRK24(www.addgeneorg/51950)和pRL528(www.addgene.org/58495)促进结合。在选择用于夫妻转移的载体时,必须小心谨慎。例如,在 CyanoGate 套件中,自复制货物矢量 pPMQAK1-T 编码为 Mob 蛋白12。然而,pSEVA421-T不44,因此,生物必须从合适的帮助向量表达。使用的载体也应适合目标生物体。例如,在Anabaena sp. PCC 7120中,有效的夫妻转移需要一个帮助器载体,以保护动员器载体免受消化(例如,pRL623,它编码为三种甲基酶AvaiM,Eco47iiM和Ecot2iM)45, 46.

在本协议中,我们进一步概述了如何使用板读取器或流式细胞仪使用荧光标记来描述部件(即启动子)的性能。流量细胞计能够测量荧光在单个细胞的基础上为大量。此外,流量细胞计允许用户”门”获取的数据并消除背景噪音(例如,从培养物或污染中的颗粒物中)。相反,板读取器获取给定培养量的聚合荧光测量,通常在几个复制孔中。与细胞仪不同,板式读片器的主要优势包括成本更低、可用性更高,并且通常不需要用于下游数据分析的专业软件。板读机的主要缺点是与细胞仪相比灵敏度相对较低,并且与测量培养物的光学密度存在潜在问题。对于比较分析,必须对每口孔的板读取器样本进行标准化(例如,对培养密度进行测量,通常以 750 nm [OD750] 时的光密度为吸光度),这可能导致样品的精度也致密和/或未很好地混合(例如,当容易聚集或絮凝时)。

作为概述,这里我们详细介绍了生成 0 级零件的原则,然后使用 CyanoGate 套件进行分层组装,并将克隆到适合夫妻转移的载体中。然后,我们演示了夫妻转移过程,选择表达荧光标记的轴跨结子菌株,以及随后使用流式细胞仪或板读取器获取荧光数据。

Protocol

1. 使用植物莫克洛和 CyanoGate 工具包的矢量组件 注:在继续矢量组装之前,强烈建议用户熟悉植物和CyanoGate MoClo系统的矢量级结构12、15。 0 级部件的构造注: 0 级部件可以合成为完整的矢量或线性序列,用于使用 0 级接受器(例如,gBlocks、IDT)进行装配。或者,序列可以从源模板(例如,载体或纯化基因组DNA)放大。这…

Representative Results

为了演示金门装配工作流程,在 1 级位置(正向)接受器矢量 (pICH47732) 中组装了一个表达盒,其中包含以下 0 级部件:C-phycocyaninoperc560 (pC0.005) 的启动器,eYFP (pC0.008) 和双终止器 TrrnB (pC0.082)12的编码顺序。在组件反应转化后,使用大肠杆菌菌落的标准蓝白筛选成功组装(图3)。1 级?…

Discussion

与其他矢量装配方法相比,金门装配具有几个优点,特别是在可伸缩性20,21方面。然而,在实验室中建立金门系统需要时间来熟悉各个部件和接受方矢量库以及整体装配流程。对于更复杂的程序集或并行执行大量复杂程序集(例如,制作一套包含多个基因表达盒的 T 级矢量),通常需要仔细规划。我们建议首先列出所需的所有基因表达盒组合,然后映?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者感谢PHYCONET生物技术和生物科学研究理事会(BBSRC)工业生物技术和生物能源网络(NIBB)和工业生物技术创新中心(IBioIC)的财政支持。GARG、AASO 和 AP 感谢 BBSRC EASTBIO CASE 博士计划(授权编号 BB/M010996/1)、国家技术与技术委员会 (CONACYT) 博士计划以及 IBioIC-BBSRC 协作培训伙伴关系 (CTP) 博士计划的资助支持,分别。我们感谢康拉德·穆利诺(伦敦玛丽女王大学)和波尔·埃里克·詹森和朱莉·安妮玛丽·齐塔·泽德勒(哥本哈根大学)对质粒病媒和协议的贡献和建议。

Materials

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) Thermo Fisher Scientific R0404 Used in 2.1.3.
Adenosine 5′-triphosphate (ATP) disodium salt Sigma-Aldrich A2383 Used in Table 2.
Agar (microbiology tested) Sigma-Aldrich A1296-500g Used in 8.3.
Agarose Bioline BIO-41026 Used in 6.
Attune NxT Flow Cytometer Thermo Fisher Scientific Used in 4.3.1.
Bovine Serum Albumin (BSA) Sigma-Aldrich A2153 Used in Table 2.
BpiI (BbsI) Thermo Fisher Scientific ER1011 Used in Table 2.
BsaI (Eco31I) Thermo Fisher Scientific ER0291 Used in Table 2.
Carbenicillin disodium VWR International A1491.0005 Used in 2.1.3.
Corning Costar TC-Treated flat-bottom 24 well plates Sigma-Aldrich CLS3527 Used in 4.1.3.
Dimethyl Sulfoxide (DMSO) Thermo Fisher Scientific BP231-100 Used in 3.6.2.
DNeasy Plant Mini Kit Qiagen 69104 DNA extraction kit. Used in 5.
FLUOstar Omega Microplate reader BMG Labtech Used in 4.2.2.
GeneJET Plasmid Miniprep Kit Thermo Fisher Scientific K0503 Plasmid purification kit. Used in step 2.3.2.
Glass beads (0.5 mm diameter) BioSpec Products 11079105 Used in 5.2.
Glycerol Thermo Fisher Scientific 10021083 Used in 2.3.1, 3.6.2.
Isopropyl-beta-D-thiogalactopyranoside (IPTG) Thermo Fisher Scientific 10356553 Used in 2.1.3.
Kanamycin sulphate (Gibco) Thermo Fisher Scientific 11815-024 Used in 2.1.3.
Membrane filters (0.45 μm) MF-Millipore HAWP02500 Used in 3.3.7
Microplates, 96-well, flat-bottom (Chimney Well) µCLEAR Greiner Bio-One 655096 Used in 4.2.1.
Monarch DNA Gel Extraction Kit New England Biolabs T1020S Used in 1.1.2.2.
Monarch PCR DNA Cleanup Kit New England Biolabs T1030 DNA purification kit. Used in 1.1.2.3.
Multitron Pro incubator with LEDs Infors HT Shaking incubator with white LED lights. Used in 4.1.4.
MyTaq DNA Polymerase Bioline BIO-21108 Used in 7.1.
NanoDrop One Thermo Fisher Scientific ND-ONE-W Used in 2.3.3.
One Shot TOP10 chemically competent E. coli Thermo Fisher Scientific C404010 Used in 2.1.1.
Phosphate buffer saline (PBS) solution (10X concentrate) VWR International K813 Used in 4.3.2.
Q5High-Fidelity DNA Polymerase New England Biolabs M0491S Used in 1.1.2.1.
Quick-Load 1 kb DNA Ladder New England Biolabs N0468S Used in Figure 4.
Screw-cap tubes (1.5 ml) Starstedt 72.692.210 Used in 3.6.3
Spectinomycin dihydrochloride pentahydrate VWR International J61820.06 Used in 2.1.3.
Sterilin Clear Microtiter round-bottom 96-well plates Thermo Fisher Scientific 612U96 Used in 4.3.1.
T4 DNA ligase Thermo Fisher Scientific EL0011 Used in Table 2.
TissueLyser II Qiagen 85300 Bead mill. Used in 5.2.

References

  1. Luan, G., Lu, X. Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnology Advances. 36 (2), 430-442 (2018).
  2. Madsen, M. A., Semerdzhiev, S., Amtmann, A., Tonon, T. Engineering mannitol biosynthesis in Escherichia coli and Synechococcus sp. PCC 7002 using a green algal fusion protein. ACS Synthetic Biology. 7 (12), 2833-2840 (2018).
  3. Menin, B., et al. Non-endogenous ketocarotenoid accumulation in engineered Synechocystis sp. PCC 6803. Physiologia Plantarum. 166 (1), 403-412 (2019).
  4. Varman, A. M., Yu, Y., You, L., Tang, Y. J. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microbial Cell Factories. 12 (1), 1-8 (2013).
  5. Vavitsas, K., et al. Responses of Synechocystis sp. PCC 6803 to heterologous biosynthetic pathways. Microbial Cell Factories. 16, 140 (2017).
  6. Yang, G., et al. Photosynthetic production of sunscreen shinorine using an engineered cyanobacterium. ACS Synthetic Biology. 7 (2), 664-671 (2018).
  7. Nielsen, A. Z., et al. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts. Plant Journal. 87 (1), 87-102 (2016).
  8. Nielsen, J., Keasling, J. D. Engineering cellular metabolism. Cell. 164 (6), 1185-1197 (2016).
  9. Stensjö, K., Vavitsas, K., Tyystjärvi, T. Harnessing transcription for bioproduction in cyanobacteria. Physiologia Plantarum. 162 (2), 148-155 (2018).
  10. Santos-Merino, M., Singh, A. K., Ducat, D. C. New applications of synthetic biology tools for cyanobacterial metabolic engineering. Frontiers in Bioengineering and Biotechnology. 7, 1-24 (2019).
  11. Lea-Smith, D. J., Vasudevan, R., Howe, C. J. Generation of marked and markerless mutants in model cyanobacterial species. Journal of Visualized Experiments. 111, e54001 (2016).
  12. Vasudevan, R., et al. CyanoGate: A modular cloning suite for engineering cyanobacteria based on the plant MoClo syntax. Plant Physiology. 180 (1), 39-55 (2019).
  13. Andreou, A. I., Nakayama, N. Mobius assembly: A versatile golden-gate framework towards universal DNA assembly. PLoS ONE. 13 (1), 1-18 (2018).
  14. Crozet, P., et al. Birth of a Photosynthetic Chassis: A MoClo toolkit enabling synthetic biology in the microalga Chlamydomonas reinhardtii. ACS Synthetic Biology. 7 (9), 2074-2086 (2018).
  15. Engler, C., et al. A Golden Gate modular cloning toolbox for plants. ACS Synthetic Biology. 3 (11), 839-843 (2014).
  16. Moore, S. J., et al. EcoFlex: A multifunctional MoClo kit for E. coli synthetic biology. ACS Synthetic Biology. 5 (10), 1059-1069 (2016).
  17. Pollak, B., et al. Loop assembly: a simple and open system for recursive fabrication of DNA circuits. New Phytologist. 222 (1), 628-640 (2019).
  18. Werner, S., Engler, C., Weber, E., Gruetzner, R., Marillonnet, S. Fast track assembly of multigene constructs using golden gate cloning and the MoClo system. Bioengineered Bugs. 3 (1), 38-43 (2012).
  19. Patron, N. J., et al. Standards for plant synthetic biology: a common syntax for exchange of DNA parts. New Phytologist. 208 (1), 13-19 (2015).
  20. Chao, R., Mishra, S., Si, T., Zhao, H. Engineering biological systems using automated biofoundries. Metabolic Engineering. 42, 98-108 (2017).
  21. Chambers, S., Kitney, R., Freemont, P. The Foundry: the DNA synthesis and construction Foundry at Imperial College. Biochemical Society Transactions. 44 (3), 687-688 (2016).
  22. Gibson, D. G., et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods. 6 (5), 343-345 (2009).
  23. Rosano, G. L., Ceccarelli, E. A. Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microbial Cell Factories. 8, 1-9 (2009).
  24. Cambray, G., et al. Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Research. 41 (9), 5139-5148 (2013).
  25. Chen, Y. J., et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nature Methods. 10 (7), 659-664 (2013).
  26. Münch, R., et al. Virtual Footprint and PRODORIC: An integrative framework for regulon prediction in prokaryotes. Bioinformatics. 21 (22), 4187-4189 (2005).
  27. Salis, H. M., Mirsky, E. A., Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology. 27 (10), 946-950 (2009).
  28. Englund, E., Liang, F., Lindberg, P. Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Scientific Reports. 6, 36640 (2016).
  29. Heidorn, T., et al. Synthetic biology in cyanobacteria engineering and analyzing novel functions. Methods in Enzymology. 497, 539-579 (2011).
  30. Thiel, K., et al. Translation efficiency of heterologous proteins is significantly affected by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis sp. PCC 6803. Microbial Cell Factories. 17, 34 (2018).
  31. Liu, Q., Schumacher, J., Wan, X., Lou, C., Wang, B. Orthogonality and burdens of heterologous and gate gene circuits in E. coli. ACS Synthetic Biology. 7 (2), 553-564 (2018).
  32. Ferreira, E. A., et al. Expanding the toolbox for Synechocystis sp. PCC 6803: Validation of replicative vectors and characterization of a novel set of promoters. Synthetic Biology. (August), 1-39 (2018).
  33. Liang, F., Lindblad, P. Synechocystis PCC 6803 overexpressing RuBisCO grow faster with increased photosynthesis. Metabolic Engineering Communications. 4, 29-36 (2017).
  34. Taton, A., et al. Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Research. 42 (17), e136 (2014).
  35. Elhai, J., Wolk, C. P. Conjugal transfer of DNA to cyanobacteria. Methods in Enzymology. 167 (1984), 747-754 (1988).
  36. Gormley, E. P., Davies, J. Transfer of plasmid RSF1010 by conjugation from Escherichia coli to Streptomyces lividans and Mycobacterium smegmatis. Journal of Bacteriology. 173 (21), 6705-6708 (1991).
  37. Huang, H. H., Camsund, D., Lindblad, P., Heidorn, T. Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Research. 38 (8), 2577-2593 (2010).
  38. Huang, H. H., Lindblad, P. Wide-dynamic-range promoters engineered for cyanobacteria. Journal of Biological Engineering. 7, 10 (2013).
  39. Li, S., Sun, T., Xu, C., Chen, L., Zhang, W. Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Metabolic Engineering. 48, 163-174 (2018).
  40. Pansegrau, W., Balzer, D., Kruft, V., Lurz, R., Lanka, E. In vitro assembly of relaxosomes at the transfer origin of plasmid RP4. Proceedings of the National Academy of Sciences, USA. 87 (17), 6555-6559 (1990).
  41. Song, K., Tan, X., Liang, Y., Lu, X. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Applied Microbiology and Biotechnology. 100 (18), 7865-7875 (2016).
  42. Waters, V. L., Guiney, D. G. Processes at the nick region link conjugation, T-DNA transfer and rolling circle replication. Molecular Microbiology. 9 (6), 1123-1130 (1993).
  43. Elhai, J., Vepritskiy, A., Muro-Pastor, A. M., Flores, E., Wolk, C. P. Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. Journal of Bacteriology. 179 (6), 1998-2005 (1997).
  44. Silva-Rocha, R., et al. The Standard European Vector Architecture (SEVA): A coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Research. 41 (D1), D666-D675 (2013).
  45. Mandakovic, D., et al. CyDiv, a conserved and novel filamentous cyanobacterial cell division protein involved in septum localization. Frontiers in Microbiology. 7 (FEB), 1-11 (2016).
  46. Masukawa, H., Inoue, K., Sakurai, H., Wolk, C. P., Hausinger, R. P. Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Applied and Environmental Microbiology. 76 (20), 6741-6750 (2010).
  47. Yu, J., et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports. 5 (1), 8132 (2015).
  48. Ungerer, J., Wendt, K. E., Hendry, J. I., Maranas, C. D., Pakrasi, H. B. Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973. Proceedings of the National Academy of Sciences, USA. 115 (50), E11761-E11770 (2018).
  49. Lepesteur, M., Martin, J. M., Fleury, A. A comparative study of different preservation methods for phytoplankton cell analysis by flow cytometry. Marine Ecology Progress Series. 93 (1-2), 55-63 (1993).
  50. Day, J. G. Cryopreservation of cyanobacteria. Cyanobacteria: An Economic perspective. , 319-327 (2014).
  51. Zhou, J., et al. Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Scientific Reports. 4, 4500 (2014).
  52. Potapov, V., et al. Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly. ACS Synthetic Biology. 7 (11), 2665-2674 (2018).
  53. Ravindran, C. R. M., Suguna, S., Shanmugasundaram, S. Electroporation as a tool to transfer the plasmid pRL489 in Oscillatoria MKU 277. Journal of Microbiological Methods. 66, 174-176 (2006).
  54. Stevenson, K., McVey, A. F., Clark, I. B. N., Swain, P. S., Pilizota, T. General calibration of microbial growth in microplate readers. Scientific Reports. 6, 38828 (2016).
  55. Maecker, H. T., Trotter, J. Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry Part A. 69 (9), 1037-1042 (2006).
check_url/fr/60451?article_type=t

Play Video

Citer Cet Article
Gale, G. A. R., Schiavon Osorio, A. A., Puzorjov, A., Wang, B., McCormick, A. J. Genetic Modification of Cyanobacteria by Conjugation Using the CyanoGate Modular Cloning Toolkit. J. Vis. Exp. (152), e60451, doi:10.3791/60451 (2019).

View Video